Indecomposable matrices over a distributive lattice
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 299-316 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice $L$ are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set $F_n(L)$ of all $n\times n$ fully indecomposable matrices as a subsemigroup of the semigroup $H_n(L)$ of all $n\times n$ Hall matrices over the lattice $L$ are given.
In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice $L$ are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set $F_n(L)$ of all $n\times n$ fully indecomposable matrices as a subsemigroup of the semigroup $H_n(L)$ of all $n\times n$ Hall matrices over the lattice $L$ are given.
Classification : 06D05, 15A18, 15A33
Keywords: distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization
@article{CMJ_2006_56_2_a2,
     author = {Tan, Yi-jia},
     title = {Indecomposable matrices over a distributive lattice},
     journal = {Czechoslovak Mathematical Journal},
     pages = {299--316},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291738},
     zbl = {1164.15326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a2/}
}
TY  - JOUR
AU  - Tan, Yi-jia
TI  - Indecomposable matrices over a distributive lattice
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 299
EP  - 316
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a2/
LA  - en
ID  - CMJ_2006_56_2_a2
ER  - 
%0 Journal Article
%A Tan, Yi-jia
%T Indecomposable matrices over a distributive lattice
%J Czechoslovak Mathematical Journal
%D 2006
%P 299-316
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a2/
%G en
%F CMJ_2006_56_2_a2
Tan, Yi-jia. Indecomposable matrices over a distributive lattice. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 299-316. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a2/

[1] G. Frobenius: Über Matrizen aus nichtnegativen Elementen. Sitzb. d. Preuss, Akad. d. Wiss. (1912), 456–477.

[2] M. Marcus, H. Minc: Disjoint pairs of sets and incidence matrices. Illinois J.  Math. 7 (1963), 137–147. | DOI | MR

[3] Š. Schwarz: The semigroup of fully indecomposable relations and Hall relations. Czechoslovak Math. J. 23 (1973), 151–163. | MR | Zbl

[4] C. Y. Chao: On a conjecture of the semigroup of fully indecomposable relations. Czechoslovak Math.  J. 27 (1977), 591–597. | MR | Zbl

[5] C. Y. Chao, M. C. Zhang: On the semigroup of fully indecomposable relations. Czechoslovak Math.  J. 33 (1983), 314–319. | MR

[6] J. Y. Shao, Q. Li: On the indices of convergence of an irreducible Boolean matrix. Linear Algebra Appl. 97 (1987), 185–210. | DOI | MR

[7] J. Y. Shao, Q. Li: The index set for the class of irreducible Boolean matrices with given period. Linear and Multilinear Algebra 22 (1988), 285–303. | DOI | MR | Zbl

[8] R. A. Brualdi, B. L. Liu: Fully indecomposable exponents of primitive matrices. Proc. Amer. Math. Soc. 112 (1991), 1193–1202. | DOI | MR

[9] X. J. Wu, J. Y. Shao: The index set of convergence of irreducible Boolean matrices. J.  Math. Res. Exposition 12 (1992), 441–447. (Chinese) | MR

[10] J. Y. Shao: On the indices of convergence of irreducible and nearly reducible Boolean matrices. Acta Math. Appl. Sinica 15 (1992), 333–344. (Chinese) | MR | Zbl

[11] Y. J. Tan: The semigroup of Hall matrices over a distributive lattice. Semigroup Forum 61 (2000), 303–314. | DOI | MR

[12] Y. J. Tan: Primitive lattice matrices. Southeast Asian Bull. Math. (to appear). | MR | Zbl

[13] Y. J. Tan: On compositions of lattice matrices. Fuzzy Sets and Systems 129 (2002), 19–28. | MR | Zbl

[14] Y. Giveón: Lattice matrices. Information and Control 7 (1964), 477–484. | DOI | MR

[15] K. H. Kim: Boolean Matrix Theory and Applications. Marcel Dekker, New York, 1982. | MR | Zbl