Involutions and semiinvolutions
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 533-541
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define a linear map called a semiinvolution as a generalization of an involution, and show that any nilpotent linear endomorphism is a product of an involution and a semiinvolution. We also give a new proof for Djocović’s theorem on a product of two involutions.
We define a linear map called a semiinvolution as a generalization of an involution, and show that any nilpotent linear endomorphism is a product of an involution and a semiinvolution. We also give a new proof for Djocović’s theorem on a product of two involutions.
Classification : 15A04, 15A23, 15A33
Keywords: classical groups; vector spaces and linear maps; involutions; factorization of a linear map into a product of simple ones
@article{CMJ_2006_56_2_a18,
     author = {Ishibashi, Hiroyuki},
     title = {Involutions and semiinvolutions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {533--541},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291754},
     zbl = {1164.15302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a18/}
}
TY  - JOUR
AU  - Ishibashi, Hiroyuki
TI  - Involutions and semiinvolutions
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 533
EP  - 541
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a18/
LA  - en
ID  - CMJ_2006_56_2_a18
ER  - 
%0 Journal Article
%A Ishibashi, Hiroyuki
%T Involutions and semiinvolutions
%J Czechoslovak Mathematical Journal
%D 2006
%P 533-541
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a18/
%G en
%F CMJ_2006_56_2_a18
Ishibashi, Hiroyuki. Involutions and semiinvolutions. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 533-541. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a18/

[1] D. Ž. Djocović: Product of two involutions. Arch. Math. XVIII (1967), 582–584. | MR

[2] E. W.  Ellers, H.  Ishibashi: Bireflectionality of the orthogonal group over a valuation domain. J.  Algebra 149 (1992), 322–325. | DOI | MR

[3] W. H.  Gustafson, P. R.  Halmos, and H.  Radjavi: Products of involutions. Linear Algebra Appl. 13 (1976), 157–162. | DOI | MR

[4] A. J.  Hahn, O. T.  O’Meara: The Classical Groups and K-Theory. Springer-Verlag, Berlin-Tokyo, 1989. | MR

[5] R. Henstock: The General Theory of Integration. Clarendon Press, Oxford, 1991. | MR | Zbl

[6] I. N.  Herstein: Topics in Algebra (2nd ed.). John Wiley and Sons, New York, 1964. | MR

[7] H. Ishibashi: Decomposition of isometries of  $U_n(V)$ over finite fields into simple isometries. Czechoslovak Math.  J. 31 (1981), 301–305. | MR

[8] H.  Ishibashi: Involutary expressions for elements in  $GL_n(Z)$ and $SL_n(Z)$. Linear Algebra Appl. 219 (1995), 165–177. | MR

[9] H.  Ishibashi: Groups generated by symplectic transvections over local rings. J.  Algebra 218 (1999), 26–80. | DOI | MR | Zbl

[10] T. J.  Laffey: Products of matrices. In: Generators and Relations in Groups and Geometries. Proc. NATO ASI  (C), A.  Barlotti et al. (eds.), Kluwer Academic, Dordrecht-London, 1991, pp. 95–123. | MR | Zbl

[11] S.  Lang: Algebra (3rd ed.). Addison Wesley, Tokyo, 1993. | MR

[12] A. R.  Sourour: A factorization theorem for matrices. Linear Multilinear Alg. 19 (1986), 141–147. | MR | Zbl

[13] B.  Zheng: Decomposition of matrices into commutators of involutions. Linear Algebra Appl. 347 (2002), 1–7. | DOI | MR | Zbl