Perimeter preserver of matrices over semifields
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 515-524
For a rank-$1$ matrix $A= {\bold a \bold b}^t$, we define the perimeter of $A$ as the number of nonzero entries in both $\bold a$ and $\bold b$. We characterize the linear operators which preserve the rank and perimeter of rank-$1$ matrices over semifields. That is, a linear operator $T$ preserves the rank and perimeter of rank-$1$ matrices over semifields if and only if it has the form $T(A)=U A V$, or $T(A)=U A^t V$ with some invertible matrices U and V.
For a rank-$1$ matrix $A= {\bold a \bold b}^t$, we define the perimeter of $A$ as the number of nonzero entries in both $\bold a$ and $\bold b$. We characterize the linear operators which preserve the rank and perimeter of rank-$1$ matrices over semifields. That is, a linear operator $T$ preserves the rank and perimeter of rank-$1$ matrices over semifields if and only if it has the form $T(A)=U A V$, or $T(A)=U A^t V$ with some invertible matrices U and V.
Classification :
15A03, 15A04, 15A23, 15A33
Keywords: linear operator; rank; dominate; perimeter; $(U, V)$-operator
Keywords: linear operator; rank; dominate; perimeter; $(U, V)$-operator
@article{CMJ_2006_56_2_a16,
author = {Song, Seok-Zun and Kang, Kyung-Tae and Jun, Young-Bae},
title = {Perimeter preserver of matrices over semifields},
journal = {Czechoslovak Mathematical Journal},
pages = {515--524},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291752},
zbl = {1164.15300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a16/}
}
Song, Seok-Zun; Kang, Kyung-Tae; Jun, Young-Bae. Perimeter preserver of matrices over semifields. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 515-524. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a16/
[1] L. B. Beasley and N. J. Pullman: Boolean rank-preserving operators and Boolean rank-1 spaces. Linear Algebra Appl. 59 (1984), 55–77. | DOI | MR
[2] L. B. Beasley, S. Z. Song and S. G. Lee: Zero term rank preservers. Linear and Multilinear Algebra 48 (2001), 313–318. | DOI | MR
[3] S. Z. Song, S. R. Park: Maximal column rank preservers of fuzzy matrices. Discuss. Math. Gen. Algebra Appl. 21 (2001), 207–218. | DOI | MR