A note on embedding into product spaces
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 507-513 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.
Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.
Classification : 46A11, 47A68, 47L20
Keywords: factorization; embedding; opertator ideal
@article{CMJ_2006_56_2_a15,
     author = {Sofi, M. A.},
     title = {A note on embedding into product spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {507--513},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291751},
     zbl = {1164.46300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a15/}
}
TY  - JOUR
AU  - Sofi, M. A.
TI  - A note on embedding into product spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 507
EP  - 513
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a15/
LA  - en
ID  - CMJ_2006_56_2_a15
ER  - 
%0 Journal Article
%A Sofi, M. A.
%T A note on embedding into product spaces
%J Czechoslovak Mathematical Journal
%D 2006
%P 507-513
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a15/
%G en
%F CMJ_2006_56_2_a15
Sofi, M. A. A note on embedding into product spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 507-513. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a15/

[1] S. F.  Bellenot: Factorable bounded operators and Schwartz spaces. Proc. Amer. Math. Soc. 42 (1974), 551–554. | DOI | MR

[2] S. F.  Bellenot: The Schwartz-Hilbert variety. Mich. Math. Jour. 22 (1975), 373–377. | MR | Zbl

[3] J.  Diestel, J.  Jarchow, and A.  Tonge: Absolutely Summing Operators. Cambridge University Press, London, 1995. | MR

[4] H.  Jarchow: Die Universalität des Raumes  $C_0$ für die Klasse der Schwartz-Räume. Math. Ann. 203 (1973), 211–214. | DOI | MR

[5] W. B. Johnson, H.  König, B.  Maurey, and J. R.  Retherford: Eigenvalues of $p$-summing and $l_p$-type operators in Banach spaces. Jour. Func. Anal. 32 (1979), 353–380. | DOI | MR

[6] H.  Junek: Locally Convex Spaces and Operator Ideals. Teubner, Stuttgart-Leipzig, 1983. | MR

[7] A.  Pietsch: Operator Ideals. North Holland, Amsterdam, 1980. | MR | Zbl

[8] D.  Randtke: A simple example of a universal Schwartz space. Proc. Amer. Math. Soc. 37 (1973), 185–188. | DOI | MR

[9] D.  Randtke: On the embedding of Schwartz spaces into product spaces. Proc. Amer. Math. Soc. 55 (1976), 87–92. | DOI | MR

[10] S. A.  Saxon: Embedding nuclear spaces in products of an arbitrary Banach space. Proc. Amer. Math. Soc. 34 (1972), 138–140. | DOI | MR | Zbl

[11] H. H.  Schaefer: Topological Vector Spaces. Springer Verlag, , 1980. | MR | Zbl

[12] M. A.  Sofi: Some remarks on $\lambda (P)$-nuclearity. Arch. der Math. 47 (1986), 353–358. | DOI | MR | Zbl

[13] M. A.  Sofi: Factoring $\lambda (P)$-nuclear operators over nuclear Frechet spaces. Jour. Math. Sciences, Part  I, 28 (1994), 267–281.

[14] T.  Terzioglu: A characterization of compact linear mappings. Arch. der Math. 22 (1971), 76-78. | DOI | MR | Zbl

[15] M.  Valdivia: Nuclearity and Banach spaces. Proc. Edinburgh Math. Soc. Ser.  2 20 (1977), 205–209. | MR | Zbl