Keywords: projections onto convex sets; nonlinear operators; slow convergence
@article{CMJ_2006_56_2_a14,
author = {Crombez, G.},
title = {A sequential iteration algorithm with non-monotoneous behaviour in the method of projections onto convex sets},
journal = {Czechoslovak Mathematical Journal},
pages = {491--506},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291750},
zbl = {1164.47399},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a14/}
}
TY - JOUR AU - Crombez, G. TI - A sequential iteration algorithm with non-monotoneous behaviour in the method of projections onto convex sets JO - Czechoslovak Mathematical Journal PY - 2006 SP - 491 EP - 506 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a14/ LA - en ID - CMJ_2006_56_2_a14 ER -
Crombez, G. A sequential iteration algorithm with non-monotoneous behaviour in the method of projections onto convex sets. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 491-506. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a14/
[1 H. Bauschke and J. Borwein] On projection algorithms for solving convex feasibility problems. Siam Review 38 (1996), 367–426. | DOI | MR | Zbl
[2] D. Butnariu and Y. Censor: On the behaviour of a block-iterative projection method for solving convex feasibility problems. Intern. J. Computer Math. 34 (1990), 79–94. | DOI
[3] Y. Censor and S. A. Zenios: Parallel optimization. Theory, algorithms, and applications, Oxford University Press, Inc., New York, 1997. | MR
[4] G. Crombez: Viewing parallel projection methods as sequential ones in convex feasibility problems. Trans. Amer. Math. Soc. 347 (1995), 2575–2583. | DOI | MR | Zbl
[5] G. Crombez: Improving the speed of convergence in the method of projections onto convex sets. Publicationes Mathematicae Debrecen 58 (2001), 29–48. | MR | Zbl
[6] F. Deutsch: The method of alternating orthogonal projections. In: “Approximation theory, spline functions and applications”, Kluwer Academic Publishers, 1992, pp. 105–121. | MR | Zbl
[7] J. Dye and S. Reich: Random products of nonexpansive mappings. In: “Optimization and Nonlinear Analysis”, Pitman Research Notes in Mathematics Series, Vol. 244, Longman, Harlow, 1992, pp. 106–118. | MR
[8] W. Gearhart and M. Koshy: Acceleration schemes for the method of alternating projections. J. Comp. Appl. Math. 26 (1989), 235–249. | DOI | MR
[9] L. G. Gubin, B. T. Polyak and E. V. Raik: The method of projections for finding the common point of convex sets. USSR Comput. Math. and Math. Phys. 7 (1967), 1–24. | DOI
[10] M. Hanke and W. Niethammer: On the acceleration of Kaczmarz’s method for inconsistent linear systems. Linear Algebra Appl. 130 (1990), 83–98. | MR
[11] D. Schott: Iterative solution of convex problems by Fejér-monotone methods. Numer. Funct. Anal. and Optimiz. 16 (1995), 1323–1357. | DOI | MR
[12] H. Stark and Y. Yang: Vector space projections. J. Wiley & Sons, Inc., New York, 1998.
[13] L. Vandenberghe and S. Boyd: Semidefinite programming. Siam Review 38 (1996), 49–95. | DOI | MR
[14] Y. Yang, N. Galatsanos and A. Katsaggelos: Projection-based spatially adaptive reconstruction of block-transform compressed images. IEEE Trans. Image Processing 4 (1995), 896–908. | DOI
[15] D. C. Youla: Mathematical theory of image restoration by the method of convex projections. In: H. Stark (editor), “Image recovery: theory and applications”, Academic Press, New York, 1987, pp. 29–77. | MR