Keywords: Pettis integral; McShane integral; Kurzweil-Henstock integral; locally convex spaces
@article{CMJ_2006_56_2_a13,
author = {Marraffa, V.},
title = {Riemann type integrals for functions taking values in a locally convex space},
journal = {Czechoslovak Mathematical Journal},
pages = {475--490},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291749},
zbl = {1164.28304},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a13/}
}
Marraffa, V. Riemann type integrals for functions taking values in a locally convex space. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 475-490. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a13/
[1] Sk. Jaker Ali, N. D. Chakraborty: Pettis integration in locally convex spaces. Analysis Math. 23 (1997), 241–257. | DOI | MR
[2] C. Blondia: Integration in locally convex spaces. Simon Stevin 55 (1981), 81–102. | MR | Zbl
[3] L. Di Piazza, K. Musiał: A characterization of variationally McShane integrable Banach-space valued functions. Illinois J. Math. 45 (2001), 279–289. | DOI | MR
[4] H. G. Garnir, M. De Wilde, and J. Schmets: Analyse Fonctionnelle, T. II, Mesure et Intégration dans L’Espace Euclidien $E_n$. Birkhauser-Verlag, Basel, 1972.
[5] D. H. Fremlin: The generalized McShane integral. Illinois J. Math. 39 (1995), 39–67. | DOI | MR | Zbl
[6] D. H. Fremlin, J. Mendoza: On the integration of vector-valued functions. Illinois J. Math. 38 (1994), 127–147. | DOI | MR
[7] R. A. Gordon: The McShane integral of Banach-valued functions. Illinois J. Math. 34 (1990), 557–567. | DOI | MR | Zbl
[8] V. Marraffa: The McShane integral in a locally convex space. Rocky Mountain J. (2006) (to appear).
[9] C. W. McArthur, J. R. Retherford: Some applications of an inequality in locally convex spaces. Trans. Amer. Math. Soc. 137 (1969), 115–123. | DOI | MR
[10] S. Nakanishi: The Henstock integral for functions with values in nuclear spaces. Math. Japonica 39 (1994), 309–335. | MR | Zbl
[11] K. Sakurada, S. Nakanishi: Equivalence of the McShane and Bochner integrals for functions with values in Hilbertian (UCs-N) spaces endowed with nuclearity. Math. Japonica 47 (1998), 261–272. | MR
[12] A. Pietsch: Nuclear Locally Convex Spaces. Springer-Verlag, Berlin and New York, 1972. | MR | Zbl
[13] S. Rolewicz: Metric Linear Spaces. D. Reidel Publishing Company, Warszawa, 1985. | MR | Zbl
[14] V. A. Skvortsov, A. P. Solodov: A variational integral for Banach-valued functions. R.A.E. 24 (1998/9), 799–806. | MR