Keywords: algebraic frame; dimension; $d$-elements; $z$-elements; lattice-ordered group; $f$-ring
@article{CMJ_2006_56_2_a12,
author = {Mart{\'\i}nez, Jorge},
title = {Dimension in algebraic frames},
journal = {Czechoslovak Mathematical Journal},
pages = {437--474},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291748},
zbl = {1164.06311},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a12/}
}
Martínez, Jorge. Dimension in algebraic frames. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 437-474. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a12/
[1] M. F. Atiyah and I. G. MacDonald: Introduction to Commutative Algebra. Addison-Wesley, 1969. | MR
[2] B. Banaschewski: Pointfree topology and the spectrum of $f$-rings. Ordered Algebraic Structures. W. C. Holland and J. Martínez, Eds., Kluwer Acad. Publ., 1997, pp. 123–148. | MR
[3] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics 608, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR
[4] G. Birkhoff: Lattice Theory (3rd Ed.). AMS Colloq. Publ. XXV, Providence, 1967. | MR
[5] P. F. Conrad: Epi-archimedean groups. Czechoslovak Math. J. 24 (1974), 192–218. | MR | Zbl
[6] P. Conrad and J. Martínez: Complemented lattice-ordered groups. Indag. Math. (N.S.) 1 (1990), 281–297. | DOI | MR
[7] M. Darnel: Theory of Lattice-Ordered Groups. Marcel Dekker, New York, 1995. | MR | Zbl
[8] L. Gillman and M. Jerison: Rings of Continuous Functions. Graduate Texts Math. 43, Springer Verlag, Berlin-Heidelberg-New York, 1976. | MR
[9] A. W. Hager, C. M. Kimber and W. Wm. McGovern: Least-integer closed groups. Proc. Conf. Ord. Alg. Struc. (Univ. of Florida, March 2001); J. Martínez, Ed.; Kluwer Acad. Publ. (2002), 245–260. | MR
[10] M. Henriksen, J. Martínez and R. G. Woods: Spaces $X$ in which all prime $z$-ideals of $C(X)$ are either minimal or maximal. Comment. Math. Univ. Carolinae. 44 (2003), 261–294. | MR
[11] C. B. Huijsmans and B. de Pagter: On $z$-ideals and $d$-ideals in Riesz spaces, I. Indag. Math. 42, Fasc. 2 (1980), 183–195. | MR
[12] C. B. Huijsmans, B. de Pagter: On $z$-ideals and $d$-ideals in Riesz spaces, II. Indag. Math. 42, Fasc. 4 (1980), 391–408. | MR
[13] C. B. Huijsmans and de Pagter: Ideal theory in $f$-algebras. Trans AMS 269 (January, 1982), 225–245. | MR
[14] P. J. Johnstone: Stone Spaces. Cambridge Studies in Adv. Math, Cambridge Univ. Press. 3 (1982). | MR | Zbl
[15] S. Larson: Convexity conditions on $f$-rings. Canad. J. Math. XXXVIII (1986), 48–64. | MR | Zbl
[16] W. A. J. Luxemburg and A. C. Zaanen: Riesz Spaces, I. North Holland, Amsterdam-London, 1971.
[17] J. Martínez: Archimedean lattices. Alg. Universalis 3 (1973), 247–260. | DOI | MR
[18] J. Martínez: Archimedean-like classes of lattice-ordered groups. Trans. AMS 186 (1973), 33–49. | DOI | MR
[19] J. Martínez: The hyper-archimedean kernel sequence of a lattice-ordered group. Bull. Austral. Math. Soc. 10 (1974), 337–349. | DOI | MR
[20] J. Martínez: The $z$-dimension of an archimedean $f$-ring. Work in progress.
[21] J. Martínez: The regular top of an algebraic frame. Work in progress.
[22] J. Martínez and S. D. Woodward: Bézout and Prüfer $f$-rings. Comm. in Alg. 20 (1992), 2975–2989.
[23] J. Martínez and E. R. Zenk: When an algebraic frame is regular. Alg. Universalis 50 (2003), 231–257. | DOI | MR
[24] A. Monteiro: L’Arithmétique des filtres et les espaces topologiques. Segundo Symposium de Matemática; Villavicencio (Mendoza), 1954, pp. 129–162. | MR | Zbl
[25] J. T. Snodgrass and C. Tsinakis: Finite-valued algebraic lattices. Alg. Universalis 30 (1993), 311–318. | DOI | MR