Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 425-435
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The exponential stability property of an evolutionary process is characterized in terms of the existence of some functionals on certain function spaces. Thus are generalized some well-known results obtained by Datko, Rolewicz, Littman and Van Neerven.
The exponential stability property of an evolutionary process is characterized in terms of the existence of some functionals on certain function spaces. Thus are generalized some well-known results obtained by Datko, Rolewicz, Littman and Van Neerven.
Classification : 34D05, 34D20, 34G10, 46B45, 47D06, 47N20
Keywords: evolutionary processes; uniform exponential stability
@article{CMJ_2006_56_2_a11,
     author = {Preda, Petre and Pogan, Alin and Preda, Ciprian},
     title = {Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {425--435},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291747},
     zbl = {1164.34432},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a11/}
}
TY  - JOUR
AU  - Preda, Petre
AU  - Pogan, Alin
AU  - Preda, Ciprian
TI  - Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 425
EP  - 435
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a11/
LA  - en
ID  - CMJ_2006_56_2_a11
ER  - 
%0 Journal Article
%A Preda, Petre
%A Pogan, Alin
%A Preda, Ciprian
%T Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes
%J Czechoslovak Mathematical Journal
%D 2006
%P 425-435
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a11/
%G en
%F CMJ_2006_56_2_a11
Preda, Petre; Pogan, Alin; Preda, Ciprian. Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 425-435. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a11/

[1] R. Datko: Extending a theorem of Liapunov to Hilbert spaces. J. Math. Anal. Appl. 32 (1970), 610–616. | DOI | MR

[2] R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM. J. Math. Analysis 3 (1973), 428–445. | MR

[3] E. Hille and R. S. Phillips: Functional Analysis and Semi-groups (revised edition). Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, R.I., 1957. | MR

[4] W. Littman: A generalization of the theorem Datko-Pazy. Lecture Notes in Control and Inform. Sci., Springer Verlag 130 (1989), 318–323. | DOI | MR

[5] J. M. A. M. van Neerven: Exponential stability of operators and semigroups. J. Func. Anal. 130 (1995), 293–309. | DOI | MR

[6] J. M. A. M. van Neerven: The Asymptotic Behaviour of Semigroups of Linear Operators, Theory, Advances and Applications, Vol. 88. Birkhauser, 1996. | MR

[7] J. M. A. M. van Neerven: Lower semicontinuity and the theorem of Datko and Pazy. Int. Eq. Op. Theory 42 (2002), 482–492. | DOI | MR | Zbl

[8] A. Pazy: On the applicability of Liapunov’s theorem in Hilbert spaces. SIAM. J. Math. Anal. Appl. 3 (1972), 291–294. | DOI | MR

[9] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, 1983. | MR | Zbl

[10] S. Rolewicz: On uniform N-equistability. J. Math. Anal. Appl. 115 (1986), 434–441. | MR | Zbl

[11] J. Zabczyk: Remarks on the control of discrete-time distributed parameter systems. SIAM J. Control. Optim. 12 (1974), 721–735. | DOI | MR | Zbl