Keywords: connected domination number; connected domination critical graph relative to $K_{s, s}$ tree.
@article{CMJ_2006_56_2_a10,
author = {Chen, Xue-Gang and Sun, Liang},
title = {Connected domination critical graphs with respect to relative complements},
journal = {Czechoslovak Mathematical Journal},
pages = {417--423},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291746},
zbl = {1164.05417},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a10/}
}
Chen, Xue-Gang; Sun, Liang. Connected domination critical graphs with respect to relative complements. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 417-423. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a10/
[1] E. Cockaye: Variations on the Domination Number of a Graph. Lecture at the University of Natal, 1988.
[2] W. Goddard, M. A. Henning and H. C. Swart: Some Nordhaus-Gaddum-type results. J. Graph Theory 16 (1992), 221–231. | DOI | MR
[3] T. W. Haynes and M. A. Henning: Domination critical graphs with respect to relative complements. Australas J. Combin. 18 (1998), 115–126. | MR
[4] T. W. Haynes, M. A. Henning and L. C. van der Merwe: Domination and total domination critical trees with respect to relative complements. Ars Combin. 59 (2001), 117–127. | MR
[5] T. W. Haynes, M. A. Henning and L. C. van der Merwe: Total domination critical graphs with respect to relative complements. Ars Combin. 64 (2002), 169–179. | MR
[6] T. W. Haynes, C. M. Mynhardt and L. C. van der Merwe: Total domination edge critical graphs. Utilitas Math. 54 (1998), 229–240. | MR
[7] S. T. Hedetniemi: Renu Laskar, Connected domination in graphs. Graph Theory and Combinatorics (1984), 209–217. | MR
[8] E. Sampathkumar and H. B. Walikar: The connected domination number of a graph. Math. Phys. Sci. 13 (1979), 607–613. | MR