Finite rank operators in Jacobson radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 287-298 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate finite rank operators in the Jacobson radical $\mathcal R_{\mathcal N\otimes \mathcal M}$ of $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$, where $\mathcal N$, $\mathcal M$ are nests. Based on the concrete characterizations of rank one operators in $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$ and $\mathcal R_{\mathcal N\otimes \mathcal M}$, we obtain that each finite rank operator in $\mathcal R_{\mathcal N\otimes \mathcal M}$ can be written as a finite sum of rank one operators in $\mathcal R_{\mathcal N\otimes \mathcal M}$ and the weak closure of $\mathcal R_{\mathcal N\otimes \mathcal M}$ equals $\mathop {\mathrm Alg}({\mathcal N\otimes \mathcal M})$ if and only if at least one of $\mathcal N$, $\mathcal M$ is continuous.
In this paper we investigate finite rank operators in the Jacobson radical $\mathcal R_{\mathcal N\otimes \mathcal M}$ of $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$, where $\mathcal N$, $\mathcal M$ are nests. Based on the concrete characterizations of rank one operators in $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$ and $\mathcal R_{\mathcal N\otimes \mathcal M}$, we obtain that each finite rank operator in $\mathcal R_{\mathcal N\otimes \mathcal M}$ can be written as a finite sum of rank one operators in $\mathcal R_{\mathcal N\otimes \mathcal M}$ and the weak closure of $\mathcal R_{\mathcal N\otimes \mathcal M}$ equals $\mathop {\mathrm Alg}({\mathcal N\otimes \mathcal M})$ if and only if at least one of $\mathcal N$, $\mathcal M$ is continuous.
Classification : 47L35, 47L75
Keywords: Jacobson radical; finite rank operator
@article{CMJ_2006_56_2_a1,
     author = {Zhe, Dong},
     title = {Finite rank operators in {Jacobson} radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {287--298},
     year = {2006},
     volume = {56},
     number = {2},
     mrnumber = {2291737},
     zbl = {1164.47398},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a1/}
}
TY  - JOUR
AU  - Zhe, Dong
TI  - Finite rank operators in Jacobson radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 287
EP  - 298
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a1/
LA  - en
ID  - CMJ_2006_56_2_a1
ER  - 
%0 Journal Article
%A Zhe, Dong
%T Finite rank operators in Jacobson radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$
%J Czechoslovak Mathematical Journal
%D 2006
%P 287-298
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a1/
%G en
%F CMJ_2006_56_2_a1
Zhe, Dong. Finite rank operators in Jacobson radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 287-298. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a1/

[1] K. Davidson, J. Orr: The Jacobson radical of a CSL  algebra. Trans. Amer. Math. Soc. 344 (1994), 925–947. | DOI | MR

[2] J. A. Erdos: On finite rank operators in nest algebras. J.  London Math. Soc. 43 (1968), 391–397. | MR

[3] F. Gilfeather, A. Hopenwasser, and D. Larson: Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbation. J. Funct. Anal. 55 (1984), 176–199. | MR

[4] A. Hopenwasser: The radical of a reflexive algebra. Pacific J. Math. 65 (1976), 375–392. | DOI | MR

[5] A. Hopenwasser, R. Moore: Finite rank operators in reflexive operator algebras. J. London Math. Soc. 27 (1983), 331–338. | MR

[6] C. Laurie, W. Longstaff: A note on rank-one operators in reflexive algebras. Proc. Amer. Math. Soc. 89 (1983), 293–297. | DOI | MR

[7] W. Longstaff: Strongly reflexive lattices. J. London Math. Soc. 11 (1975), 491–498. | MR | Zbl

[8] W. Longstaff: Operators of rank one in reflexive algebras. Canadian J.  Math. 28 (1976), 19–23. | MR | Zbl

[9] J. R. Ringrose: On some algebras of operators. Proc. London Math. Soc. 15 (1965), 61–83. | MR | Zbl

[10] J. R. Ringrose: On some algebras of operators  II. Proc. London Math. Soc. 15 (1965), 61–83. | MR