Keywords: asymptotic stability; viscoelastic problems; boundary dissipation; wave equation
@article{CMJ_2006_56_2_a0,
author = {Park, Jong Yeoul and Park, Sun Hye},
title = {Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation},
journal = {Czechoslovak Mathematical Journal},
pages = {273--286},
year = {2006},
volume = {56},
number = {2},
mrnumber = {2291736},
zbl = {1164.35445},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a0/}
}
TY - JOUR AU - Park, Jong Yeoul AU - Park, Sun Hye TI - Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation JO - Czechoslovak Mathematical Journal PY - 2006 SP - 273 EP - 286 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a0/ LA - en ID - CMJ_2006_56_2_a0 ER -
%0 Journal Article %A Park, Jong Yeoul %A Park, Sun Hye %T Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation %J Czechoslovak Mathematical Journal %D 2006 %P 273-286 %V 56 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a0/ %G en %F CMJ_2006_56_2_a0
Park, Jong Yeoul; Park, Sun Hye. Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 273-286. http://geodesic.mathdoc.fr/item/CMJ_2006_56_2_a0/
[1] J. J. Bae, J. Y. Park, and J. M. Jeong: On uniform decay of solutions for wave equation of Kirchhoff type with nonlinear boundary damping and memory source term. Appl. Math. Comput. 138 (2003), 463–478. | DOI | MR
[2] E. E. Beckenbach and R. Bellman: Inequalities. Springer-Verlag, Berlin, 1971. | MR
[3] M. M. Cavalcanti: Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete and Continuous Dynamical Systems 8 (2002), 675–695. | MR | Zbl
[4] M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma, and J. A. Soriano: Global existence and asymptotic stability for viscoelastic problems. Differential and Integral Equations 15 (2002), 731–748. | MR
[5] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, and J. A. Soriano: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Diff. Int. Eqs. 14 (2001), 85–116. | MR
[6] I. Lasiecka, D. Tataru: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Diff. Int. Eqs. 6 (1993), 507–533. | MR
[7] J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris, 1969. | MR | Zbl
[8] J. Y. Park, J. J. Bae: On coupled wave equation of Kirchhoff type with nonliear boundary damping and memory term. Appl. Math. Comput. 129 (2002), 87–105. | DOI | MR
[9] B. Rao: Stabilization of Kirchhoff plate equation in star-shaped domain by nonlinear feedback. Nonlinear Anal., T.M.A. 20 (1993), 605–626. | DOI | MR
[10] M. L. Santos: Decay rates for solutions of a system of wave equations with memory. Elect. J. Diff. Eqs. 38 (2002), 1–17. | MR | Zbl
[11] E. Zuazua: Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Optim. 28 (1990), 466–477. | DOI | MR | Zbl