Keywords: $MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product
@article{CMJ_2006_56_1_a6,
author = {Jakub{\'\i}k, J\'an},
title = {On a homogeneity condition for $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {79--98},
year = {2006},
volume = {56},
number = {1},
mrnumber = {2206288},
zbl = {1164.06314},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a6/}
}
Jakubík, Ján. On a homogeneity condition for $MV$-algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 79-98. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a6/
[1] S. J. Bernau: Lateral and Dedekind completion of archimedean lattice groups. J. London Math. Soc. 12 (1976), 320–322. | DOI | MR | Zbl
[2] R. Cignoli, I. M. I. D’Ottaviano, and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[3] P. F. Conrad: Lateral completion of lattice ordered groups. Proc. London Math. Soc. 19 (1969), 444–480. | DOI | MR
[4] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publishers and Ister Science, Dordrecht and Bratislava, 2000. | MR
[5] J. Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. | DOI | MR
[6] J. Jakubík: Orthogonal hull of a strongly projectable lattice ordered group. Czechoslovak Math. J. 28 (1978), 484–504. | MR
[7] J. Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math. J. 44 (1994), 725–739.
[8] J. Jakubík: On complete $MV$-algebras. Czechoslovak Math. J. 45 (1995), 473–480. | MR
[9] J. Jakubík: On archimedean $MV$-algebras. Czechoslovak Math. J. 48 (1998), 575–582. | DOI | MR
[10] J. Jakubík: Retract mappings of projectable $MV$-algebras. Soft Computing 4 (2000), 27–32.
[11] J. Jakubík: Direct product decompositions of pseudo $MV$-algebras. Archivum Math. 37 (2001), 131–142. | MR
[12] J. Jakubík: On the $\alpha $-completeness of pseudo $MV$-algebras. Math. Slovaca 52 (2002), 511–516. | MR
[13] J. Jakubík: Generalized cardinal properties of lattices and lattice ordered groups. Czechoslovak Math. J 54 (2004), 1035–1053. | DOI | MR
[14] R. S. Pierce: Some questions about complete Boolean-algebras. Proc. Sympos. Pure Math. 2 (1961), 129–140. | MR | Zbl
[15] E. C. Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 104 (1962), 334–346. | DOI | MR | Zbl
[16] W. A. Luxemburg, A. C. Zaanen: Riesz Spaces, Vol. 1. North Holland, Amsterdam, 1971.