Invariant subspaces of $X^{**}$ under the action of biconjugates
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 61-77
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study conditions on an infinite dimensional separable Banach space $X$ implying that $X$ is the only non-trivial invariant subspace of $X^{**}$ under the action of the algebra $\mathbb{A}(X)$ of biconjugates of bounded operators on $X$: $\mathbb{A}(X)=\lbrace T^{**}\: T \in \mathcal {B}(X)\rbrace $. Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of $c_{0}$, and show in particular that any space which does not contain $\ell _1$ and has property (u) of Pelczynski is simple.
We study conditions on an infinite dimensional separable Banach space $X$ implying that $X$ is the only non-trivial invariant subspace of $X^{**}$ under the action of the algebra $\mathbb{A}(X)$ of biconjugates of bounded operators on $X$: $\mathbb{A}(X)=\lbrace T^{**}\: T \in \mathcal {B}(X)\rbrace $. Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of $c_{0}$, and show in particular that any space which does not contain $\ell _1$ and has property (u) of Pelczynski is simple.
Classification : 46B10, 46B25, 46B99, 47A15, 47L05
Keywords: algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski
@article{CMJ_2006_56_1_a5,
     author = {Grivaux, Sophie and Rycht\'a\v{r}, Jan},
     title = {Invariant subspaces of $X^{**}$ under the action of biconjugates},
     journal = {Czechoslovak Mathematical Journal},
     pages = {61--77},
     year = {2006},
     volume = {56},
     number = {1},
     mrnumber = {2206287},
     zbl = {1164.47302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a5/}
}
TY  - JOUR
AU  - Grivaux, Sophie
AU  - Rychtář, Jan
TI  - Invariant subspaces of $X^{**}$ under the action of biconjugates
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 61
EP  - 77
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a5/
LA  - en
ID  - CMJ_2006_56_1_a5
ER  - 
%0 Journal Article
%A Grivaux, Sophie
%A Rychtář, Jan
%T Invariant subspaces of $X^{**}$ under the action of biconjugates
%J Czechoslovak Mathematical Journal
%D 2006
%P 61-77
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a5/
%G en
%F CMJ_2006_56_1_a5
Grivaux, Sophie; Rychtář, Jan. Invariant subspaces of $X^{**}$ under the action of biconjugates. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 61-77. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a5/

[1] S. Argyros, G. Godefroy, and H. P. Rosenthal: Descriptive set theory and Banach spaces. Handbook of the geometry of Banach spaces, Vol. 2. North Holland, Amsterdam (2003), 1007–1069. | DOI | MR

[2] P. G. Casazza, R. H. Lohman: A general construction of spaces of the type of R. C. James. Canad. J.  Math. 27 (1975), 1263–1270. | DOI | MR

[3] G. Godefroy, D. Li: Banach spaces which are $M$-ideals in their bidual have property  (u). Ann. Inst. Fourier. 39 (1989), 361–371. | DOI | MR | Zbl

[4] G. Godefroy, P. Saab: Weakly unconditionnaly converging series in $M$-ideals. Math. Scand. 64 (1989), 307–318. | DOI | MR

[5] G. Godefroy, M. Talagrand: Nouvelles classes d’espaces de Banach à prédual unique. Séminaire d’analyse fonctionnelle École Polytechnique, Exposé  $n^\circ 9$ (année 1980–1981).

[6] G. Godefroy: Existence and uniqueness of isometric preduals: a survey, Banach space theory (Iowa City,  IA,  1987). Contemp. Math. 85 (1989), 131–193. | MR

[7] G. Godefroy, N. J. Kalton, and P. D. Saphar: Unconditional ideals in Banach spaces. Studia Math. 104 (1993), 13–59. | MR

[8] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucia, J. Pelant, and V. Zizler: Functional Analysis and Infinite Dimensional Geometry. CMS  books in Mathematics/Ouvrages de Mathématiques de la  SMC, Vol.  8. Springer-Verlag, New York, 2001. | MR

[9] R. Haydon, E. Odell, and H. P. Rosenthal: On certain classes of Baire-1 functions with applications to Banach space theory. Functional Analysis, Springer-Verlag, , 1991, pp. 1–35. | MR

[10] R. C. James: Bases and reflexivity of Banach spaces. Annals of Math. 52 (1950), 518–527. | DOI | MR | Zbl

[11] A. Kechris, A. Louveau: A classification of Baire class 1  functions. Trans. Amer. Math. Soc. 318 (1990), 209–236. | MR

[12] E. Kissin, V. Lomonosov, and V. Shulman: Implementation of derivations and invariant subspaces. Israel J.  Math 134 (2003), 1–28. | DOI | MR

[13] G. Lancien: On the Szlenk index and the $w^{*}$-dentability index. Quart. J.  Math. Oxford 47 (1996), 59–71. | DOI | MR

[14] J. Lindenstrauss, C. Stegall: Examples of separable spaces which do not contain  $\ell _1$ and whose duals are nonseparable. Studia Math. 54 (1975), 81–105. | DOI | MR

[15] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band  92. Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR

[16] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces. II. Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band  97. Springer-Verlag, Berlin-Heidelberg-New York, 1979. | MR

[17] E. Odell, H. P. Rosenthal: A double-dual characterization of separable Banach spaces containing  $\ell _{1}$. Israel J.  Math. 20 (1975), 375–384. | DOI | MR

[18] A. Pelczynski: A connection between weakly unconditional convergence and weak completeness of Banach spaces. Bull. Acad. Pol. Sci. 6 (1958), 251–253. | MR

[19] C. Rickart: General Theory of Banach Algebras. Van Nostrand, , 1960. | MR | Zbl

[20] H. P. Rosenthal: A characterization of Banach spaces containing  $\ell _{1}$. Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. | DOI | MR

[21] H. P. Rosenthal: A characterization of Banach spaces containing  $c_{0}$. J.  Amer. Math. Soc. 7 (1994), 707–748. | MR

[22] A. Sersouri: On James’ type spaces. Trans. Amer. Math. Soc. 310 (1988), 715–745. | MR | Zbl

[23] A. Sersouri: A note of the Lavrentiev index for quasi-reflexive Banach spaces. Banach space theory (Iowa City, IA,  1987). Contemp. Math. 85 (1989), 497–508. | MR

[24] P. Wojtaszczyk: Banach spaces for analysts. Cambridge studies in Advanced Mathematics, Vol. 25. Cambridge University Press, 1991. | MR