Keywords: algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski
@article{CMJ_2006_56_1_a5,
author = {Grivaux, Sophie and Rycht\'a\v{r}, Jan},
title = {Invariant subspaces of $X^{**}$ under the action of biconjugates},
journal = {Czechoslovak Mathematical Journal},
pages = {61--77},
year = {2006},
volume = {56},
number = {1},
mrnumber = {2206287},
zbl = {1164.47302},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a5/}
}
Grivaux, Sophie; Rychtář, Jan. Invariant subspaces of $X^{**}$ under the action of biconjugates. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 61-77. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a5/
[1] S. Argyros, G. Godefroy, and H. P. Rosenthal: Descriptive set theory and Banach spaces. Handbook of the geometry of Banach spaces, Vol. 2. North Holland, Amsterdam (2003), 1007–1069. | DOI | MR
[2] P. G. Casazza, R. H. Lohman: A general construction of spaces of the type of R. C. James. Canad. J. Math. 27 (1975), 1263–1270. | DOI | MR
[3] G. Godefroy, D. Li: Banach spaces which are $M$-ideals in their bidual have property (u). Ann. Inst. Fourier. 39 (1989), 361–371. | DOI | MR | Zbl
[4] G. Godefroy, P. Saab: Weakly unconditionnaly converging series in $M$-ideals. Math. Scand. 64 (1989), 307–318. | DOI | MR
[5] G. Godefroy, M. Talagrand: Nouvelles classes d’espaces de Banach à prédual unique. Séminaire d’analyse fonctionnelle École Polytechnique, Exposé $n^\circ 9$ (année 1980–1981).
[6] G. Godefroy: Existence and uniqueness of isometric preduals: a survey, Banach space theory (Iowa City, IA, 1987). Contemp. Math. 85 (1989), 131–193. | MR
[7] G. Godefroy, N. J. Kalton, and P. D. Saphar: Unconditional ideals in Banach spaces. Studia Math. 104 (1993), 13–59. | MR
[8] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucia, J. Pelant, and V. Zizler: Functional Analysis and Infinite Dimensional Geometry. CMS books in Mathematics/Ouvrages de Mathématiques de la SMC, Vol. 8. Springer-Verlag, New York, 2001. | MR
[9] R. Haydon, E. Odell, and H. P. Rosenthal: On certain classes of Baire-1 functions with applications to Banach space theory. Functional Analysis, Springer-Verlag, , 1991, pp. 1–35. | MR
[10] R. C. James: Bases and reflexivity of Banach spaces. Annals of Math. 52 (1950), 518–527. | DOI | MR | Zbl
[11] A. Kechris, A. Louveau: A classification of Baire class 1 functions. Trans. Amer. Math. Soc. 318 (1990), 209–236. | MR
[12] E. Kissin, V. Lomonosov, and V. Shulman: Implementation of derivations and invariant subspaces. Israel J. Math 134 (2003), 1–28. | DOI | MR
[13] G. Lancien: On the Szlenk index and the $w^{*}$-dentability index. Quart. J. Math. Oxford 47 (1996), 59–71. | DOI | MR
[14] J. Lindenstrauss, C. Stegall: Examples of separable spaces which do not contain $\ell _1$ and whose duals are nonseparable. Studia Math. 54 (1975), 81–105. | DOI | MR
[15] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92. Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR
[16] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces. II. Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 97. Springer-Verlag, Berlin-Heidelberg-New York, 1979. | MR
[17] E. Odell, H. P. Rosenthal: A double-dual characterization of separable Banach spaces containing $\ell _{1}$. Israel J. Math. 20 (1975), 375–384. | DOI | MR
[18] A. Pelczynski: A connection between weakly unconditional convergence and weak completeness of Banach spaces. Bull. Acad. Pol. Sci. 6 (1958), 251–253. | MR
[19] C. Rickart: General Theory of Banach Algebras. Van Nostrand, , 1960. | MR | Zbl
[20] H. P. Rosenthal: A characterization of Banach spaces containing $\ell _{1}$. Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. | DOI | MR
[21] H. P. Rosenthal: A characterization of Banach spaces containing $c_{0}$. J. Amer. Math. Soc. 7 (1994), 707–748. | MR
[22] A. Sersouri: On James’ type spaces. Trans. Amer. Math. Soc. 310 (1988), 715–745. | MR | Zbl
[23] A. Sersouri: A note of the Lavrentiev index for quasi-reflexive Banach spaces. Banach space theory (Iowa City, IA, 1987). Contemp. Math. 85 (1989), 497–508. | MR
[24] P. Wojtaszczyk: Banach spaces for analysts. Cambridge studies in Advanced Mathematics, Vol. 25. Cambridge University Press, 1991. | MR