Keywords: pseudo-effect algebra; pseudo $MV$-algebra; antilattice; prime ideal; automorphism; unital po-group; unital $\ell $-group
@article{CMJ_2006_56_1_a4,
author = {Dvure\v{c}enskij, Anatolij},
title = {Holland{\textquoteright}s theorem for pseudo-effect algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {47--59},
year = {2006},
volume = {56},
number = {1},
mrnumber = {2206286},
zbl = {1164.06329},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a4/}
}
Dvurečenskij, Anatolij. Holland’s theorem for pseudo-effect algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 47-59. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a4/
[1] A. Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups. J. Austral. Math. Soc. 72 (2002), 427–445. | DOI | MR
[2] A. Dvurečenskij: Ideals of pseudo-effect algebras and their applications. Tatra Mt. Math. Publ. 27 (2003), 45–65. | MR
[3] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000. | MR
[4] A. Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. I. Basic properties. Inter. J. Theor. Phys. 40 (2001), 685–701. | MR
[5] A. Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. II. Group representations. Inter. J. Theor. Phys. 40 (2001), 703–726. | MR
[6] G. Georgescu, A. Iorgulescu: Pseudo-$MV$ algebras. Multi. Val. Logic 6 (2001), 95–135. | MR
[7] A. M. W. Glass: Polars and their applications in directed interpolation groups. Trans. Amer. Math. Soc. 166 (1972), 1–25. | DOI | MR | Zbl
[8] P. Hájek: Observations on non-commutative fuzzy logic. Soft Computing 8 (2003), 38–43. | DOI
[9] C. Holland: The lattice-ordered group of automorphism of an ordered set. Michigan Math. J. 10 (1963), 399–408. | DOI | MR | Zbl