On sandwich sets and congruences on regular semigroups
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 27-46 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $S$ be a regular semigroup and $E(S)$ be the set of its idempotents. We call the sets $S(e,f)f$ and $eS(e,f)$ one-sided sandwich sets and characterize them abstractly where $e,f \in E(S)$. For $a, a^{\prime } \in S$ such that $a=aa^{\prime }a$, $a^{\prime }=a^{\prime }aa^{\prime }$, we call $S(a)=S(a^{\prime }a, aa^{\prime })$ the sandwich set of $a$. We characterize regular semigroups $S$ in which all $S(e,f)$ (or all $S(a))$ are right zero semigroups (respectively are trivial) in several ways including weak versions of compatibility of the natural order. For every $a \in S$, we also define $E(a)$ as the set of all idempotets $e$ such that, for any congruence $\rho $ on $S$, $a \rho a^2$ implies that $a \rho e$. We study the restrictions on $S$ in order that $S(a)$ or $E(a)\cap D_{a^2}$ be trivial. For $\mathcal F \in \lbrace \mathcal S, \mathcal E\rbrace $, we define $\mathcal F$ on $S$ by $a \mathrel {\mathcal F}b$ if $F(a) \cap F (b)\ne \emptyset $. We establish for which $S$ are $\mathcal S$ or $\mathcal E$ congruences.
Let $S$ be a regular semigroup and $E(S)$ be the set of its idempotents. We call the sets $S(e,f)f$ and $eS(e,f)$ one-sided sandwich sets and characterize them abstractly where $e,f \in E(S)$. For $a, a^{\prime } \in S$ such that $a=aa^{\prime }a$, $a^{\prime }=a^{\prime }aa^{\prime }$, we call $S(a)=S(a^{\prime }a, aa^{\prime })$ the sandwich set of $a$. We characterize regular semigroups $S$ in which all $S(e,f)$ (or all $S(a))$ are right zero semigroups (respectively are trivial) in several ways including weak versions of compatibility of the natural order. For every $a \in S$, we also define $E(a)$ as the set of all idempotets $e$ such that, for any congruence $\rho $ on $S$, $a \rho a^2$ implies that $a \rho e$. We study the restrictions on $S$ in order that $S(a)$ or $E(a)\cap D_{a^2}$ be trivial. For $\mathcal F \in \lbrace \mathcal S, \mathcal E\rbrace $, we define $\mathcal F$ on $S$ by $a \mathrel {\mathcal F}b$ if $F(a) \cap F (b)\ne \emptyset $. We establish for which $S$ are $\mathcal S$ or $\mathcal E$ congruences.
Classification : 20M10, 20M17
Keywords: regular semigroup; sandwich set; congruence; natural order; compatibility; completely regular element or semigroup; cryptogroup
@article{CMJ_2006_56_1_a3,
     author = {Petrich, Mario},
     title = {On sandwich sets and congruences on regular semigroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {27--46},
     year = {2006},
     volume = {56},
     number = {1},
     mrnumber = {2206285},
     zbl = {1157.20035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a3/}
}
TY  - JOUR
AU  - Petrich, Mario
TI  - On sandwich sets and congruences on regular semigroups
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 27
EP  - 46
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a3/
LA  - en
ID  - CMJ_2006_56_1_a3
ER  - 
%0 Journal Article
%A Petrich, Mario
%T On sandwich sets and congruences on regular semigroups
%J Czechoslovak Mathematical Journal
%D 2006
%P 27-46
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a3/
%G en
%F CMJ_2006_56_1_a3
Petrich, Mario. On sandwich sets and congruences on regular semigroups. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 27-46. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a3/

[1] K. Auinger: Free objects in joins of strict inverse and completely simple semigroups. J. London Math. Soc. 45 (1992), 491–507. | MR

[2] K. Auinger: The congruence lattice of a strict regular semigroup. J. Pure Appl. Algebra 81 (1992), 219–245. | DOI | MR | Zbl

[3] T. S. Blyth and M. G. Gomes: On the compatibility of the natural order on a regular semigroup. Proc. Royal Soc. Edinburgh A94 (1983), 79–84. | MR

[4] J. M. Howie: An introduction to semigroup theory. Academic Press, London, 1976. | MR | Zbl

[5] G. Lallement: Congruences et équivalences de Green sur un demi-groupe régulier. C.R. Acad. Sci., Paris 262 (1966), 613–616. | MR | Zbl

[6] K. S. S. Nambooripad: Structure of regular semigroups. Mem. Amer. Math. Soc. 224 (1979). | MR | Zbl

[7] K. S. S. Nambooripad: The natural partial order on a regular semigroup. Proc. Edinburgh Math. Soc. 23 (1980), 249–260. | MR | Zbl

[8] M. Petrich: Introduction to semigroups. Merrill, Columbus, 1973. | MR | Zbl

[9] M. Petrich: Inverse semigroups. Wiley, New York, 1984. | MR | Zbl

[10] P. G. Trotter: Congruence extensions in regular semigroups. J. Algebra 137 (1991), 166–179. | DOI | MR | Zbl

[11] P. S. Venkatesan: Right (left) inverse semigroups. J. Algebra 31 (1974), 209–217. | DOI | MR | Zbl