Circuit and cocircuit partitions of binary matroids
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 19-25 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give an example of a class of binary matroids with a cocircuit partition and we give some characteristics of a set of cocircuits of such binary matroids which forms a partition of the ground set.
We give an example of a class of binary matroids with a cocircuit partition and we give some characteristics of a set of cocircuits of such binary matroids which forms a partition of the ground set.
Classification : 05B35
Keywords: binary matroid; affine matroid; cocircuit; Eulerian; circuit partition
@article{CMJ_2006_56_1_a2,
     author = {Mphako, Eunice Gogo},
     title = {Circuit and cocircuit partitions of binary matroids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {19--25},
     year = {2006},
     volume = {56},
     number = {1},
     mrnumber = {2206284},
     zbl = {1164.05328},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a2/}
}
TY  - JOUR
AU  - Mphako, Eunice Gogo
TI  - Circuit and cocircuit partitions of binary matroids
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 19
EP  - 25
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a2/
LA  - en
ID  - CMJ_2006_56_1_a2
ER  - 
%0 Journal Article
%A Mphako, Eunice Gogo
%T Circuit and cocircuit partitions of binary matroids
%J Czechoslovak Mathematical Journal
%D 2006
%P 19-25
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a2/
%G en
%F CMJ_2006_56_1_a2
Mphako, Eunice Gogo. Circuit and cocircuit partitions of binary matroids. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 19-25. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a2/

[1] T. H. Brylawski: A decomposition for combinatorial geometries. Trans. Amer. Math. Soc. 171 (1972), 235–282. | DOI | MR | Zbl

[2] A. P. Heron: Some topics in matroid theory. PhD. thesis, University of Oxford, 1972.

[3] J. G. Oxley: Matroid Theory. Oxford University Press, New York, 1992. | MR | Zbl

[4] D. J. A. Welsh: Euler and bipartite matroids. J.  Combin. Theory 6 (1969), 375–377. | DOI | MR | Zbl

[5] D. J. A.  Welsh: Matroid Theory. Academic Press, London-New York, 1976. | MR | Zbl