Circuit and cocircuit partitions of binary matroids
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 19-25
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give an example of a class of binary matroids with a cocircuit partition and we give some characteristics of a set of cocircuits of such binary matroids which forms a partition of the ground set.
We give an example of a class of binary matroids with a cocircuit partition and we give some characteristics of a set of cocircuits of such binary matroids which forms a partition of the ground set.
Classification :
05B35
Keywords: binary matroid; affine matroid; cocircuit; Eulerian; circuit partition
Keywords: binary matroid; affine matroid; cocircuit; Eulerian; circuit partition
@article{CMJ_2006_56_1_a2,
author = {Mphako, Eunice Gogo},
title = {Circuit and cocircuit partitions of binary matroids},
journal = {Czechoslovak Mathematical Journal},
pages = {19--25},
year = {2006},
volume = {56},
number = {1},
mrnumber = {2206284},
zbl = {1164.05328},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a2/}
}
Mphako, Eunice Gogo. Circuit and cocircuit partitions of binary matroids. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 19-25. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a2/
[1] T. H. Brylawski: A decomposition for combinatorial geometries. Trans. Amer. Math. Soc. 171 (1972), 235–282. | DOI | MR | Zbl
[2] A. P. Heron: Some topics in matroid theory. PhD. thesis, University of Oxford, 1972.
[3] J. G. Oxley: Matroid Theory. Oxford University Press, New York, 1992. | MR | Zbl
[4] D. J. A. Welsh: Euler and bipartite matroids. J. Combin. Theory 6 (1969), 375–377. | DOI | MR | Zbl
[5] D. J. A. Welsh: Matroid Theory. Academic Press, London-New York, 1976. | MR | Zbl