4-dimensional anti-Kähler manifolds and Weyl curvature
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 267-271
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
On a 4-dimensional anti-Kähler manifold, its zero scalar curvature implies that its Weyl curvature vanishes and vice versa. In particular any 4-dimensional anti-Kähler manifold with zero scalar curvature is flat.
On a 4-dimensional anti-Kähler manifold, its zero scalar curvature implies that its Weyl curvature vanishes and vice versa. In particular any 4-dimensional anti-Kähler manifold with zero scalar curvature is flat.
Classification :
32J27, 53B30, 53C25, 53C55, 53C56, 53C80
Keywords: 4-dimensional anti-Kähler manifold; zero scalar curvature; Weyl curvature; flat
Keywords: 4-dimensional anti-Kähler manifold; zero scalar curvature; Weyl curvature; flat
@article{CMJ_2006_56_1_a15,
author = {Kim, Jaeman},
title = {4-dimensional {anti-K\"ahler} manifolds and {Weyl} curvature},
journal = {Czechoslovak Mathematical Journal},
pages = {267--271},
year = {2006},
volume = {56},
number = {1},
mrnumber = {2207017},
zbl = {1157.53316},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a15/}
}
Kim, Jaeman. 4-dimensional anti-Kähler manifolds and Weyl curvature. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 267-271. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a15/