Keywords: analytic continuation; analytic function; Bergman space; capacity; exceptional set; holomorphic function; Muckenhoupt weight; removable singularity; singular set; Sobolev space; weight
@article{CMJ_2006_56_1_a11,
author = {Bj\"orn, Anders},
title = {Removable singularities for weighted {Bergman} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {179--227},
year = {2006},
volume = {56},
number = {1},
mrnumber = {2207013},
zbl = {1164.30303},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a11/}
}
Björn, Anders. Removable singularities for weighted Bergman spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 179-227. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a11/
[1] D. R. Adams and L. I. Hedberg: Function Spaces and Potential Theory. Springer, Berlin-Heidelberg, 1995. | MR
[2] L. V. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets. Acta Math. 83 (1950), 101–129. | DOI | MR
[3] N. Arcozzi and A. Björn: Dominating sets for analytic and harmonic functions and completeness of weighted Bergman spaces. Math. Proc. Roy. Irish Acad. 102A (2002), 175–192. | MR
[4] A. Björn: Removable singularities for Hardy spaces. Complex Variables Theory Appl. 35 (1998), 1–25. | DOI | MR
[5] A. Björn: Removable singularities on rectifiable curves for Hardy spaces of analytic functions. Math. Scand. 83 (1998), 87–102. | DOI | MR
[6] A. Björn: Removable singularities for weighted Bergman spaces. Preprint, LiTH-MAT-R-1999-23, Linköpings universitet, Linköping, 1999. | MR
[7] A. Björn: Removable singularities for $H^p$ spaces of analytic functions, $0. Ann. Acad. Sci. Fenn. Math. 26 (2001), 155–174. MR 1816565
[8] A. Björn: Properties of removable singularities for Hardy spaces of analytic functions. J. London Math. Soc. 66 (2002), 651–670. | DOI | MR
[9] A. Björn: Removable singularities for analytic functions in BMO and locally Lipschitz spaces. Math. Z. 244 (2003), 805–835. | DOI | MR
[10] L. Carleson: Selected Problems on Exceptional Sets. Van Nostrand, Princeton, N. J., 1967. | MR | Zbl
[11] J. J. Carmona and J. J. Donaire: On removable singularities for the analytic Zygmund class. Michigan Math. J. 43 (1996), 51–65. | DOI | MR
[12] E. P. Dolzhenko: On the removal of singularities of analytic functions. Uspekhi Mat. Nauk 18, No. 4 (1963), 135–142. (Russian)
[13] J. García-Cuerva and J. L. Rubio de Francia: Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam, 1985. | MR
[14] J. B. Garnett: Analytic Capacity and Measure. Lecture Notes in Math. Vol. 297, Springer, Berlin-Heidelberg, 1972. | MR | Zbl
[15] V. P. Havin and V. G. Maz’ya: On approximation in the mean by analytic functions. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 23, No. 13 (1968), 62–74. (Russian) | MR
[16] L. I. Hedberg: Approximation in the mean by analytic functions. Trans. Amer. Math. Soc. 163 (1972), 157–171. | DOI | MR | Zbl
[17] L. I. Hedberg: Removable singularities and condenser capacities. Ark. Mat. 12 (1974), 181–201. | DOI | MR | Zbl
[18] J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, Oxford, 1993. | MR
[19] L. Hörmander: The Analysis of Linear Partial Differential Operators I. 2nd ed., Springer, Berlin-Heidelberg, 1990. | MR
[20] R. Kaufman: Hausdorff measure, BMO and analytic functions. Pacific J. Math. 102 (1982), 369–371. | DOI | MR | Zbl
[21] S. Ya. Khavinson: Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains. Mat. Sb. 54 (1961), 3–50. (Russian) | MR | Zbl
[22] S. Ya. Khavinson: Removable singularities of analytic functions of the V. I. Smirnov class. Problems in Modern Function Theory, Proceedings of a Conference (P. P. Belinskiĭ, ed.), Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1976, pp. 160–166. (Russian) | MR
[23] S. V. Khrushchëv: A simple proof of a removable singularity theorem for a class of Lipschitz functions. Investigations on Linear Operators and the Theory of Functions XI, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Vol. 113, Nauka, Leningrad, 1981, pp. 199–203, 267. (Russian) | MR
[24] T. Kilpeläinen: Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 95–113.
[25] P. Koskela: Removable singularities for analytic functions. Michigan Math. J. 40 (1993), 459–466. | DOI | MR | Zbl
[26] J. Král: Singularités non essentielles des solutions des équations aux dérivées partielles. Séminaire de Théorie du Potentiel (Paris, 1972–1974), Lecture Notes in Math. Vol. 518, Springer, Berlin-Heidelberg, 1976, pp. 95–106. | MR
[27] X. U. Nguyen: Removable sets of analytic functions satisfying a Lipschitz condition. Ark. Mat. 17 (1979), 19–27. | MR | Zbl
[28] W. Rudin: Analytic functions of class $H_p$. Trans. Amer. Math. Soc. 78 (1955), 46–66. | MR | Zbl
[29] W. Rudin: Functional Analysis. 2nd ed., McGraw-Hill, New York, 1991. | MR | Zbl
[30] X. Tolsa: Painlevé’s problem and the semiadditivity of the analytic capacity. Acta Math. 190 (2003), 105–149. | DOI | MR
[31] J. Väisälä: Lectures on $n$-Dimensional Quasiconformal Mappings. Lecture Notes in Math. vol. 229, Springer, Berlin-Heidelberg, 1971. | MR