Extensions of partially ordered partial abelian monoids
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 155-178
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notion of a partially ordered partial abelian monoid is introduced and extensions of partially ordered abelian monoids by partially ordered abelian groups are studied. Conditions for the extensions to exist are found. The cases when both the above mentioned structures have the Riesz decomposition property, or are lattice ordered, are treated. Some applications to effect algebras and MV-algebras are shown.
The notion of a partially ordered partial abelian monoid is introduced and extensions of partially ordered abelian monoids by partially ordered abelian groups are studied. Conditions for the extensions to exist are found. The cases when both the above mentioned structures have the Riesz decomposition property, or are lattice ordered, are treated. Some applications to effect algebras and MV-algebras are shown.
Classification : 03G12, 06F15, 20F60, 81P10
Keywords: abelian partially ordered groups; partially ordered partial abelian monoids; effect algebras; MV-algebras; Riesz decomposition properties; short exact sequences; extensions
@article{CMJ_2006_56_1_a10,
     author = {Pulmannov\'a, Sylvia},
     title = {Extensions of partially ordered partial abelian monoids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {155--178},
     year = {2006},
     volume = {56},
     number = {1},
     mrnumber = {2207012},
     zbl = {1164.81300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a10/}
}
TY  - JOUR
AU  - Pulmannová, Sylvia
TI  - Extensions of partially ordered partial abelian monoids
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 155
EP  - 178
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a10/
LA  - en
ID  - CMJ_2006_56_1_a10
ER  - 
%0 Journal Article
%A Pulmannová, Sylvia
%T Extensions of partially ordered partial abelian monoids
%J Czechoslovak Mathematical Journal
%D 2006
%P 155-178
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a10/
%G en
%F CMJ_2006_56_1_a10
Pulmannová, Sylvia. Extensions of partially ordered partial abelian monoids. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 155-178. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a10/

[1] G. Birkhoff: Lattice-ordered groups. Ann. Math. 43 (1942), 298–331. | DOI | MR | Zbl

[2] C. C. Chang: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR

[3] C. C. Chang: A new proof of the completeness of the Lukasziewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80. | MR

[4] P. M. Cohn: Universal Algebra. Harper and Row Publishers, New York, Evaston, London, 1965. | MR | Zbl

[5] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic foundation of many-valued reasoning. Kluwer, Dordrecht, 2000. | MR

[6] R. Cignoli and A. Torrens: The poset of prime $l$-ideals of an abelian $l$-group with a strong unit. J. Algebra 184 (1996), 604–612. | DOI | MR

[7] G. Chevalier and S. Pulmannová: Some ideal lattices in partial abelian monoids and effect algebras. Order 17 (2000), 75–92. | DOI | MR

[8] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer, Dordrecht, 2000. | MR

[9] C. J. Everett, Jr.: An extension theory for rings. Amer. J. Math. 64 (1942), 363–370. | DOI | MR | Zbl

[10] A. E. Evseev: A survey of partial grupoids. In: Properties of Semigroups (Lyapin, E. S., ed.), Gos. Ped. Inst. Leningrad (1984), 39–76. (Russian) | MR

[11] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR

[12] L. Fuchs: The extensions of partially ordered groups. Acta Math. Acad. Sci. Hungar. 1 (1950), 118–124. | DOI | MR

[13] L. Fuchs: Riesz groups. Ann. Scuola norm sup. Pisa 19 (1965), 1–34. | MR | Zbl

[14] D. W. Feldman and A. Wilce: Abelian extensions of quantum logics. Internat. J. Theor. Phys. 37 (1998), 39–43. | DOI | MR

[15] K. R. Goodearl: Partially Ordered Abelian Groups with Interpolation. American Mathematical Society, Providence, Rhode Island, 1986. | MR | Zbl

[16] K. R. Goodearl and D. E. Handelman: Stenosis in dimension groups and QF C*-algebras. J. Reine Angew. Math. 332 (1982), 1–98. | MR

[17] S. P. Gudder and S. Pulmannová: Quotients of partial abelian monoids. Algebra Universalis 38 (1997), 395–421. | DOI | MR

[18] M. Hall Jr.: The Theory of Groups. New york, 1959. | MR | Zbl

[19] D. Handelman: Extensions for AF C*-algebras and dimension groups. Trans. Amer. Math. Soc. 271 (1982), 537–573. | MR | Zbl

[20] J. Hedlíková and S. Pulmannová: Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenianae 45 (1996), 247–279. | MR

[21] G. Jenča and S. Pulmannová: Quotients of partial abelian monoids and the Riesz decomposition property. Algebra Universalis 47 (2002), 443–477. | DOI | MR

[22] F. Kôpka and F. Chovanec: D-posets. Math. Slovaca 44 (1994), 21–34. | MR

[23] E. S. Lyapin and A. E. Evseev: Partial Grupoids. Ross. Gos. Ped. Inst. St.-Petersburg, 1991. (Russian)

[24] J. M. Lindsay and K. R. Parthasarathy: Cohomology of power sets with applications in quantum probability. Commun. Math. Phys. 124 (1989), 337–364. | DOI | MR

[25] D. Mundici: Interpretations of AF C*-algebras in Lukasziewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. | DOI | MR

[26] G. J. Murphy: C*-algebras and Operator Theory. Academic Press, INC., Boston, 1990. | MR

[27] O. Nánásiová: D-sets and groups. Internat. J. Theor. Phys. 34 (1995), 1637–1642. | DOI

[28] A. Di Nola and A. Lettieri: Coproduct MV-algebras, non-standard reals and Riesz spaces. J. Algebra 185 (1996), 605–620. | DOI | MR

[29] O. Nánásiová and S. Pulmannová: Abelian extensions of difference sets. Tatra Mt. Math. Publ. 22 (2001), 179–196. | MR

[30] S. Pulmannová: Congruences in partial abelian semigroups. Algebra Universalis 37 (1997), 119–140. | DOI | MR

[31] K. Ravindran: On a structure theory of effect algebras. PhD thesis, Kansas State Univ., Manhattan, Kansas, 1996.

[32] K. D. Schmidt: Minimal clans: A class of ordered partial semigroups including Boolean rings and lattice-ordered groups. In: Semigroups-Theory and Applications (Oberwolfach 1986) LNM 1320, Springer-Verlag, Berlin, Heidelberg, New York, 1988, pp. 300–341. | MR | Zbl

[33] O. Schreier: Über die Erweiterung von Gruppen, I. Monatshefte Math. Phys. 34 (1926), 165–180. | DOI | MR

[34] R. Teller: On the extensions of lattice ordered groups. Pacific J. Math. 14 (1964), 709–718. | DOI | MR | Zbl

[35] A. Wilce: Partial abelian semigroups. Internat. J. Theor. Phys. 34 (1995), 1807–1812. | DOI | MR | Zbl