Keywords: abelian partially ordered groups; partially ordered partial abelian monoids; effect algebras; MV-algebras; Riesz decomposition properties; short exact sequences; extensions
@article{CMJ_2006_56_1_a10,
author = {Pulmannov\'a, Sylvia},
title = {Extensions of partially ordered partial abelian monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {155--178},
year = {2006},
volume = {56},
number = {1},
mrnumber = {2207012},
zbl = {1164.81300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a10/}
}
Pulmannová, Sylvia. Extensions of partially ordered partial abelian monoids. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 155-178. http://geodesic.mathdoc.fr/item/CMJ_2006_56_1_a10/
[1] G. Birkhoff: Lattice-ordered groups. Ann. Math. 43 (1942), 298–331. | DOI | MR | Zbl
[2] C. C. Chang: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR
[3] C. C. Chang: A new proof of the completeness of the Lukasziewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80. | MR
[4] P. M. Cohn: Universal Algebra. Harper and Row Publishers, New York, Evaston, London, 1965. | MR | Zbl
[5] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic foundation of many-valued reasoning. Kluwer, Dordrecht, 2000. | MR
[6] R. Cignoli and A. Torrens: The poset of prime $l$-ideals of an abelian $l$-group with a strong unit. J. Algebra 184 (1996), 604–612. | DOI | MR
[7] G. Chevalier and S. Pulmannová: Some ideal lattices in partial abelian monoids and effect algebras. Order 17 (2000), 75–92. | DOI | MR
[8] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer, Dordrecht, 2000. | MR
[9] C. J. Everett, Jr.: An extension theory for rings. Amer. J. Math. 64 (1942), 363–370. | DOI | MR | Zbl
[10] A. E. Evseev: A survey of partial grupoids. In: Properties of Semigroups (Lyapin, E. S., ed.), Gos. Ped. Inst. Leningrad (1984), 39–76. (Russian) | MR
[11] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. | MR
[12] L. Fuchs: The extensions of partially ordered groups. Acta Math. Acad. Sci. Hungar. 1 (1950), 118–124. | DOI | MR
[13] L. Fuchs: Riesz groups. Ann. Scuola norm sup. Pisa 19 (1965), 1–34. | MR | Zbl
[14] D. W. Feldman and A. Wilce: Abelian extensions of quantum logics. Internat. J. Theor. Phys. 37 (1998), 39–43. | DOI | MR
[15] K. R. Goodearl: Partially Ordered Abelian Groups with Interpolation. American Mathematical Society, Providence, Rhode Island, 1986. | MR | Zbl
[16] K. R. Goodearl and D. E. Handelman: Stenosis in dimension groups and QF C*-algebras. J. Reine Angew. Math. 332 (1982), 1–98. | MR
[17] S. P. Gudder and S. Pulmannová: Quotients of partial abelian monoids. Algebra Universalis 38 (1997), 395–421. | DOI | MR
[18] M. Hall Jr.: The Theory of Groups. New york, 1959. | MR | Zbl
[19] D. Handelman: Extensions for AF C*-algebras and dimension groups. Trans. Amer. Math. Soc. 271 (1982), 537–573. | MR | Zbl
[20] J. Hedlíková and S. Pulmannová: Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenianae 45 (1996), 247–279. | MR
[21] G. Jenča and S. Pulmannová: Quotients of partial abelian monoids and the Riesz decomposition property. Algebra Universalis 47 (2002), 443–477. | DOI | MR
[22] F. Kôpka and F. Chovanec: D-posets. Math. Slovaca 44 (1994), 21–34. | MR
[23] E. S. Lyapin and A. E. Evseev: Partial Grupoids. Ross. Gos. Ped. Inst. St.-Petersburg, 1991. (Russian)
[24] J. M. Lindsay and K. R. Parthasarathy: Cohomology of power sets with applications in quantum probability. Commun. Math. Phys. 124 (1989), 337–364. | DOI | MR
[25] D. Mundici: Interpretations of AF C*-algebras in Lukasziewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. | DOI | MR
[26] G. J. Murphy: C*-algebras and Operator Theory. Academic Press, INC., Boston, 1990. | MR
[27] O. Nánásiová: D-sets and groups. Internat. J. Theor. Phys. 34 (1995), 1637–1642. | DOI
[28] A. Di Nola and A. Lettieri: Coproduct MV-algebras, non-standard reals and Riesz spaces. J. Algebra 185 (1996), 605–620. | DOI | MR
[29] O. Nánásiová and S. Pulmannová: Abelian extensions of difference sets. Tatra Mt. Math. Publ. 22 (2001), 179–196. | MR
[30] S. Pulmannová: Congruences in partial abelian semigroups. Algebra Universalis 37 (1997), 119–140. | DOI | MR
[31] K. Ravindran: On a structure theory of effect algebras. PhD thesis, Kansas State Univ., Manhattan, Kansas, 1996.
[32] K. D. Schmidt: Minimal clans: A class of ordered partial semigroups including Boolean rings and lattice-ordered groups. In: Semigroups-Theory and Applications (Oberwolfach 1986) LNM 1320, Springer-Verlag, Berlin, Heidelberg, New York, 1988, pp. 300–341. | MR | Zbl
[33] O. Schreier: Über die Erweiterung von Gruppen, I. Monatshefte Math. Phys. 34 (1926), 165–180. | DOI | MR
[34] R. Teller: On the extensions of lattice ordered groups. Pacific J. Math. 14 (1964), 709–718. | DOI | MR | Zbl
[35] A. Wilce: Partial abelian semigroups. Internat. J. Theor. Phys. 34 (1995), 1807–1812. | DOI | MR | Zbl