Keywords: Taylor’s theorem; Henstock-Kurzweil integral; Alexiewicz norm
@article{CMJ_2005_55_4_a9,
author = {Talvila, Erik},
title = {Estimates of the remainder in {Taylor{\textquoteright}s} theorem using the {Henstock-Kurzweil} integral},
journal = {Czechoslovak Mathematical Journal},
pages = {933--940},
year = {2005},
volume = {55},
number = {4},
mrnumber = {2184374},
zbl = {1081.26002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a9/}
}
Talvila, Erik. Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 933-940. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a9/
[1] G. A. Anastassiou and S. S. Dragomir: On some estimates of the remainder in Taylor’s formula. J. Math. Anal. Appl. 263 (2001), 246–263. | DOI | MR
[2] V. G. Čelidze and A. G. Džvaršeǐšvili: The Theory of the Denjoy Integral and Some Applications. World Scientific, Singapore, 1989. | MR
[3] G. B. Folland: Remainder estimates in Taylor’s theorem. Amer. Math. Monthly 97 (1990), 233–235. | DOI | MR | Zbl
[4] S. Saks: Theory of the Integral. Monografie Matematyczne, Warsaw, 1937. | Zbl
[5] C. Swartz: Introduction to Gauge Integrals. World Scientific, Singapore, 2001. | MR | Zbl
[6] H. B. Thompson: Taylor’s theorem using the generalized Riemann integral. Amer. Math. Monthly 96 (1989), 346–350. | DOI | MR | Zbl
[7] R. Výborný: Some applications of Kurzweil-Henstock integration. Math. Bohem. 118 (1993), 425–441. | MR
[8] W. H. Young: The Fundamental Theorems of the Differential Calculus. Cambridge University Press, Cambridge, 1910.