Keywords: Banach algebra; weakly amenable; Arens regular; $n$-weakly amenable
@article{CMJ_2005_55_4_a3,
author = {Medghalchi, Alireza and Yazdanpanah, Taher},
title = {Problems concerning $n$-weak amenability of a {Banach} algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {863--876},
year = {2005},
volume = {55},
number = {4},
mrnumber = {2184368},
zbl = {1081.46031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a3/}
}
Medghalchi, Alireza; Yazdanpanah, Taher. Problems concerning $n$-weak amenability of a Banach algebra. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 863-876. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a3/
[1] W. G. Bade, P. G. Curtis and H. G. Dales: Amenability and weak amenability for Beurling and Lipschitz algebra. Proc. London Math. Soc. 55 (1987), 359–377. | MR
[2] H. G. Dales, F. Ghahramanim and N. Gronbaek: Derivations into iterated duals of Banach algebras. Studia Math. 128 (1998), 19–54. | MR
[3] H. G. Dales, A. Rodriguez-Palacios and M. V. Valasco: The second transpose of a derivation. J. London Math. Soc. 64 (2001), 707–721. | DOI | MR
[4] M. Despic and F. Ghahramani: Weak amenability of group algebras of locally compact groups. Canad. Math. Bull. 37 (1994), 165–167. | DOI | MR
[5] J. Duncan and Hosseiniun: The second dual of a Banach algebra. Proc. Roy. Soc. Edinburgh 84A (1978), 309–325. | MR
[6] N. Gronbaek: Weak amenability of group algebras. Bull. London Math. Soc. 23 (1991), 231–284. | MR
[7] U. Haagerup: All nuclear $C^*$-algebras are amenable. Invent. Math. 74 (1983), 305–319. | DOI | MR | Zbl
[8] B. E. Johnson: Cohomology in Banach Algebras. Mem. Amer. Math. Soc. 127 (1972). | MR | Zbl
[9] B. E. Johnson: Weak amenability of group algebras. Bull. Lodon Math. Soc. 23 (1991), 281–284. | DOI | MR | Zbl
[10] T. W. Palmer: Banach Algebra, the General Theory of $*$-algebra. Vol. 1: Algebra and Banach Algebras. Cambridge University Press, Cambridge, 1994. | MR