Keywords: (disjoint; non-singular; singular; non-dense) iteration group; (strictly) increasing mapping
@article{CMJ_2005_55_4_a20,
author = {Ciepli\'nski, Krzysztof},
title = {General construction of non-dense disjoint iteration groups on the circle},
journal = {Czechoslovak Mathematical Journal},
pages = {1079--1088},
year = {2005},
volume = {55},
number = {4},
mrnumber = {2184385},
zbl = {1081.37024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a20/}
}
Ciepliński, Krzysztof. General construction of non-dense disjoint iteration groups on the circle. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1079-1088. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a20/
[1] J. S. Bae, K. J. Min, D. H. Sung and S. K. Yang: Positively equicontinuous flows are topologically conjugate to rotation flows. Bull. Korean Math. Soc. 36 (1999), 707–716. | MR
[2] M. Bajger: On the structure of some flows on the unit circle. Aequationes Math. 55 (1998), 106–121. | DOI | MR | Zbl
[3] K. Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363–383. | MR
[4] K. Ciepliński: On conjugacy of disjoint iteration groups on the unit circle. European Conference on Iteration Theory (Muszyna-Złockie, 1998). Ann. Math. Sil. 13 (1999), 103–118. | MR
[5] K. Ciepliński: The structure of disjoint iteration groups on the circle. Czechoslovak Math. J. 54 (2004), 131–153. | DOI | MR
[6] K. Ciepliński: Topological conjugacy of disjoint flows on the circle. Bull. Korean Math. Soc. 39 (2002), 333–346. | DOI | MR
[7] K. Ciepliński and M. C. Zdun: On a system of Schröder equations on the circle. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883–1888. | DOI | MR
[8] M. C. Zdun: The structure of iteration groups of continuous functions. Aequationes Math. 46 (1993), 19–37. | MR | Zbl