Some oscillation theorems for second order differential equations
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 845-861
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation \[ (r(t)\Phi (u^{\prime }(t)))^{\prime }+c(t)\Phi (u(t))=0, \] where (i) $r,c\in C([t_{0}, \infty )$, $\mathbb{R}:=(-\infty , \infty ))$ and $r(t)>0$ on $[t_{0},\infty )$ for some $t_{0}\ge 0$; (ii) $\Phi (u)=|u|^{p-2}u$ for some fixed number $p> 1$. We also generalize some results of Hille-Wintner, Leighton and Willet.
In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation \[ (r(t)\Phi (u^{\prime }(t)))^{\prime }+c(t)\Phi (u(t))=0, \] where (i) $r,c\in C([t_{0}, \infty )$, $\mathbb{R}:=(-\infty , \infty ))$ and $r(t)>0$ on $[t_{0},\infty )$ for some $t_{0}\ge 0$; (ii) $\Phi (u)=|u|^{p-2}u$ for some fixed number $p> 1$. We also generalize some results of Hille-Wintner, Leighton and Willet.
Classification : 34C10, 34C15
Keywords: oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem
@article{CMJ_2005_55_4_a2,
     author = {Lee, Chung-Fen and Yeh, Cheh-Chih and Gau, Chuen-Yu},
     title = {Some oscillation theorems for second order differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {845--861},
     year = {2005},
     volume = {55},
     number = {4},
     mrnumber = {2184367},
     zbl = {1081.34031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a2/}
}
TY  - JOUR
AU  - Lee, Chung-Fen
AU  - Yeh, Cheh-Chih
AU  - Gau, Chuen-Yu
TI  - Some oscillation theorems for second order differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 845
EP  - 861
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a2/
LA  - en
ID  - CMJ_2005_55_4_a2
ER  - 
%0 Journal Article
%A Lee, Chung-Fen
%A Yeh, Cheh-Chih
%A Gau, Chuen-Yu
%T Some oscillation theorems for second order differential equations
%J Czechoslovak Mathematical Journal
%D 2005
%P 845-861
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a2/
%G en
%F CMJ_2005_55_4_a2
Lee, Chung-Fen; Yeh, Cheh-Chih; Gau, Chuen-Yu. Some oscillation theorems for second order differential equations. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 845-861. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a2/

[1] W. J.  Coles: A simple proof of a well-known oscillation theorem. Proc. Amer. Math. Soc. 19 (1968), 507. | MR | Zbl

[2] Á.  Elbert: A half-linear second order differential equation. Colloquia Math. Soc.  J. Bolyai 30: Qualitivative Theorem of Differential Equations, Szeged, 1979, pp. 153–180. | MR

[3] A. M.  Fink and D. F. St.  Mary: A generalized Sturm comparison theorem and oscillatory coefficients. Monatsh. Math. 73 (1969), 207–212. | DOI | MR

[4] B. J.  Harris: On the oscillation of solutions of linear differential equations. Mathematika 31 (1984), 214–226. | DOI | MR | Zbl

[5] E.  Hille: Non-oscillation theorems. Trans. Amer. Math. Soc. 64 (1948), 234–252. | DOI | MR | Zbl

[6] A.  Kneser: Untersuchungen über die reelen Nullstellen der Integrale linearer Differentialgleichungen. Math. Ann. 42 (1893), 409–435. | DOI | MR

[7] M. K.  Kwong and A.  Zettl: Integral inequalities and second order linear oscillation. J.  Diff. Equations 45 (1982), 16–33. | DOI | MR

[8] W.  Leighton: The detection of the oscillation of solutions of a second order linear differential equation. Duke J.  Math. 17 (1950), 57–62. | DOI | MR | Zbl

[9] W.  Leighton: Comparison theorems for linear differential equations of second order. Proc. Amer. Math. Soc. 13 (1962), 603–610. | DOI | MR | Zbl

[10] H. J.  Li and C. C.  Yeh: Sturmian comparison theorem for half-linear second order differential equations. Proc. Roy. Soc. Edin. 125A (1995), 1193–1204. | MR

[11] H.  J.  Li and C. C.  Yeh: On the nonoscillatory behavior of solutions of a second order linear differential equation. Math. Nachr. 182 (1996), 295–315. | DOI | MR

[12] J. D.  Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J.  Math. Anal. Appl. 53 (1976), 418–425. | DOI | MR | Zbl

[13] R. A.  Moore: The behavior of solutions of a linear differential equation of second order. Pacific J.  Math. 5 (1955), 125–145. | DOI | MR

[14] C.  Sturm: Sur les équations différentielles linéaires du second order. J.  Math. Pures Appl. 1 (1836), 106–186.

[15] C.  Swanson: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York-London, 1968. | MR | Zbl

[16] C. T.  Taam: Nonoscillatory differential equations. Duke Math.  J. 19 (1952), 493–497. | DOI | MR

[17] D.  Willett: On the oscillatory behavior of the solutions of second order linear differential equations. Ann. Polon. Math. 21 (1969), 175–194. | DOI | MR | Zbl

[18] A.  Wintner: On the comparison theorem of Kneser-Hille. Math. Scand. 5 (1957), 255–260. | DOI | MR | Zbl

[19] D.  Willett: Classification of second order linear differential equations with respect to oscillation. Adv. Math. 3 (1969), 594–623. | DOI | MR | Zbl