Keywords: oscillatory; nonoscillatory; Riccati differential equation; Sturm Comparison Theorem
@article{CMJ_2005_55_4_a2,
author = {Lee, Chung-Fen and Yeh, Cheh-Chih and Gau, Chuen-Yu},
title = {Some oscillation theorems for second order differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {845--861},
year = {2005},
volume = {55},
number = {4},
mrnumber = {2184367},
zbl = {1081.34031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a2/}
}
TY - JOUR AU - Lee, Chung-Fen AU - Yeh, Cheh-Chih AU - Gau, Chuen-Yu TI - Some oscillation theorems for second order differential equations JO - Czechoslovak Mathematical Journal PY - 2005 SP - 845 EP - 861 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a2/ LA - en ID - CMJ_2005_55_4_a2 ER -
Lee, Chung-Fen; Yeh, Cheh-Chih; Gau, Chuen-Yu. Some oscillation theorems for second order differential equations. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 845-861. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a2/
[1] W. J. Coles: A simple proof of a well-known oscillation theorem. Proc. Amer. Math. Soc. 19 (1968), 507. | MR | Zbl
[2] Á. Elbert: A half-linear second order differential equation. Colloquia Math. Soc. J. Bolyai 30: Qualitivative Theorem of Differential Equations, Szeged, 1979, pp. 153–180. | MR
[3] A. M. Fink and D. F. St. Mary: A generalized Sturm comparison theorem and oscillatory coefficients. Monatsh. Math. 73 (1969), 207–212. | DOI | MR
[4] B. J. Harris: On the oscillation of solutions of linear differential equations. Mathematika 31 (1984), 214–226. | DOI | MR | Zbl
[5] E. Hille: Non-oscillation theorems. Trans. Amer. Math. Soc. 64 (1948), 234–252. | DOI | MR | Zbl
[6] A. Kneser: Untersuchungen über die reelen Nullstellen der Integrale linearer Differentialgleichungen. Math. Ann. 42 (1893), 409–435. | DOI | MR
[7] M. K. Kwong and A. Zettl: Integral inequalities and second order linear oscillation. J. Diff. Equations 45 (1982), 16–33. | DOI | MR
[8] W. Leighton: The detection of the oscillation of solutions of a second order linear differential equation. Duke J. Math. 17 (1950), 57–62. | DOI | MR | Zbl
[9] W. Leighton: Comparison theorems for linear differential equations of second order. Proc. Amer. Math. Soc. 13 (1962), 603–610. | DOI | MR | Zbl
[10] H. J. Li and C. C. Yeh: Sturmian comparison theorem for half-linear second order differential equations. Proc. Roy. Soc. Edin. 125A (1995), 1193–1204. | MR
[11] H. J. Li and C. C. Yeh: On the nonoscillatory behavior of solutions of a second order linear differential equation. Math. Nachr. 182 (1996), 295–315. | DOI | MR
[12] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. | DOI | MR | Zbl
[13] R. A. Moore: The behavior of solutions of a linear differential equation of second order. Pacific J. Math. 5 (1955), 125–145. | DOI | MR
[14] C. Sturm: Sur les équations différentielles linéaires du second order. J. Math. Pures Appl. 1 (1836), 106–186.
[15] C. Swanson: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York-London, 1968. | MR | Zbl
[16] C. T. Taam: Nonoscillatory differential equations. Duke Math. J. 19 (1952), 493–497. | DOI | MR
[17] D. Willett: On the oscillatory behavior of the solutions of second order linear differential equations. Ann. Polon. Math. 21 (1969), 175–194. | DOI | MR | Zbl
[18] A. Wintner: On the comparison theorem of Kneser-Hille. Math. Scand. 5 (1957), 255–260. | DOI | MR | Zbl
[19] D. Willett: Classification of second order linear differential equations with respect to oscillation. Adv. Math. 3 (1969), 594–623. | DOI | MR | Zbl