On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1055-1065
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal A$, all $y \in \mathcal A$, and all $n\in \mathbb{Z}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ of real rank zero into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal A\mid v=v^*\hspace{5.0pt}\text{and}\hspace{5.0pt}v\hspace{5.0pt}\text{is} \text{invertible}\rbrace $, all $y\in \mathcal A$ and all $n\in \mathbb{Z}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb{C}$-linear $*$-derivations on unital $C^*$-algebras.
It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal A$, all $y \in \mathcal A$, and all $n\in \mathbb{Z}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ of real rank zero into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal A\mid v=v^*\hspace{5.0pt}\text{and}\hspace{5.0pt}v\hspace{5.0pt}\text{is} \text{invertible}\rbrace $, all $y\in \mathcal A$ and all $n\in \mathbb{Z}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb{C}$-linear $*$-derivations on unital $C^*$-algebras.
Classification : 39B52, 39B82, 46L05, 47B48
Keywords: $C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb{C}$-linear $*$-derivation; stability
@article{CMJ_2005_55_4_a18,
     author = {Park, Chun-Gil and Chu, Hahng-Yun and Park, Won-Gil and Wee, Hee-Jeong},
     title = {On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1055--1065},
     year = {2005},
     volume = {55},
     number = {4},
     mrnumber = {2184383},
     zbl = {1081.39025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a18/}
}
TY  - JOUR
AU  - Park, Chun-Gil
AU  - Chu, Hahng-Yun
AU  - Park, Won-Gil
AU  - Wee, Hee-Jeong
TI  - On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 1055
EP  - 1065
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a18/
LA  - en
ID  - CMJ_2005_55_4_a18
ER  - 
%0 Journal Article
%A Park, Chun-Gil
%A Chu, Hahng-Yun
%A Park, Won-Gil
%A Wee, Hee-Jeong
%T On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
%J Czechoslovak Mathematical Journal
%D 2005
%P 1055-1065
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a18/
%G en
%F CMJ_2005_55_4_a18
Park, Chun-Gil; Chu, Hahng-Yun; Park, Won-Gil; Wee, Hee-Jeong. On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1055-1065. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a18/

[1] L.  Brown and G.  Pedersen: $C^*$-algebras of real rank zero. J.  Funct. Anal. 99 (1991), 131–149. | DOI | MR

[2] P.  Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J.  Math. Anal. Appl. 184 (1994), 431–436. | DOI | MR

[3] B. E.  Johnson: Approximately multiplicative maps between Banach algebras. J.  London Math. Soc. 37 (1988), 294–316. | DOI | MR | Zbl

[4] K.  Jun, B.  Kim and D.  Shin: On Hyers-Ulam-Rassias stability of the Pexider equation. J. Math. Anal. Appl. 239 (1999), 20–29. | MR

[5] R. V.  Kadison and G.  Pedersen: Means and convex combinations of unitary operators. Math. Scand. 57 (1985), 249–266. | DOI | MR

[6] R. V.  Kadison and J. R.  Ringrose: Fundamentals of the Theory of Operator Algebras. Elementary Theory. Academic Press, New York, 1994. | MR

[7] C.  Park and W.  Park: On the Jensen’s equation in Banach modules. Taiwanese J.  Math. 6 (2002), 523–531. | DOI | MR

[8] Th. M.  Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297–300. | DOI | MR | Zbl