@article{CMJ_2005_55_4_a17,
author = {Miyamoto, I. and Yanagishita, M. and Yoshida, H.},
title = {On harmonic majorization of the {Martin} function at infinity in a cone},
journal = {Czechoslovak Mathematical Journal},
pages = {1041--1054},
year = {2005},
volume = {55},
number = {4},
mrnumber = {2184382},
zbl = {1081.31006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a17/}
}
TY - JOUR AU - Miyamoto, I. AU - Yanagishita, M. AU - Yoshida, H. TI - On harmonic majorization of the Martin function at infinity in a cone JO - Czechoslovak Mathematical Journal PY - 2005 SP - 1041 EP - 1054 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a17/ LA - en ID - CMJ_2005_55_4_a17 ER -
Miyamoto, I.; Yanagishita, M.; Yoshida, H. On harmonic majorization of the Martin function at infinity in a cone. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1041-1054. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a17/
[1] H. Aikawa: Sets of determination for harmonic functions in an NTA domain. J. Math. Soc. Japan 48 (1996), 299-315. | DOI | MR | Zbl
[2] H. Aikawa, M. Essén: Potential Theory-Selected Topics. Lecture Notes in Math. Vol. 1633. Springer-Verlag, , 1996. | MR
[3] A. Ancona: Positive Harmonic Functions and Hyperbolicity. Lecture Notes in Math. Vol. 1344, Springer-Verlag, 1987, pp. 1–23. | MR
[4] D. H. Armitage, Ü. Kuran: On positive harmonic majorization of $y$ in $\mathbb{R}^{n}\times (0,+\infty )$. J. London Math. Soc. Ser. II 3 (1971), 733–741. | MR
[5] D. H. Armitage, S. J. Gardiner: Classical Potential Theory. Springer-Verlag, , 2001. | MR
[6] V. S. Azarin: Generalization of a theorem of Hayman on subharmonic functions in an $m$-dimensional cone Am. Math. Soc. Transl. II. Ser. 80 (1969), 119–138.
[7] A. Beurling: A minimum principle for positive harmonic functions. Ann. Acad. Sci. Fenn. Ser. AI. Math. 372 (1965), . | MR | Zbl
[8] M. Brelot: On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. Vol. 175. Springer-Verlag, , 1971. | MR
[9] R. Courant, D. Hilbert: Methods of Mathematical Physics, 1st English edition. Interscience, New York, 1954.
[10] B. E. J. Dahlberg: A minimum principle for positive harmonic functions. Proc. London Math. Soc. 33 (1976), 2380–250. | MR | Zbl
[11] J. L. Doob: Classical Potential Theory and its Probabilistic Counterpart. Springer-Verlag, 1984. | MR | Zbl
[12] D. S. Jerison, C. E. Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46 (1982), 80–147. | DOI | MR
[13] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977. | MR
[14] L. L. Helms: Introduction to Potential Theory. Wiley, New York, 1969. | MR | Zbl
[15] V. G. Maz’ya: Beurling’s theorem on a minimum principle for positive harmonic functions. Zapiski Nauchnykh Seminarov LOMI 30 (1972). | MR
[16] I. Miyamoto, M. Yanagishitam, and H. Yoshida: Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone. Canad. Math. Bull. 46 (2003), 252–264. | DOI | MR
[17] I. Miyamoto, H. Yoshida: Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone. J. Math. Soc. Japan 54 (2002), 487–512. | DOI | MR
[18] P. Sjögren: Une propriété des fonctions harmoniques positives d’après Dahlberg, Séminaire de théorie du potentiel. Lecture Notes in Math. Vol. 563, Springer-Verlag, , 1976, pp. 275–282. | MR
[19] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970. | MR | Zbl
[20] H. Yoshida: Nevanlinna norm of a subharmonic function on a cone or on a cylinder. Proc. London Math. Soc. Ser. III 54 (1987), 267–299. | MR | Zbl
[21] Y. Zhang: Ensembles équivalents a un point frontière dans un domaine lipshitzien, Séminaire de théorie du potentiel. Lecture Note in Math. Vol. 1393, Springer-Verlag, , 1989, pp. 256–265. | MR