On harmonic majorization of the Martin function at infinity in a cone
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1041-1054
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.
This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.
Classification : 31B05, 31B20
Keywords: harmonic majorization; cone; minimally thin
@article{CMJ_2005_55_4_a17,
     author = {Miyamoto, I. and Yanagishita, M. and Yoshida, H.},
     title = {On harmonic majorization of the {Martin} function at infinity in a cone},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1041--1054},
     year = {2005},
     volume = {55},
     number = {4},
     mrnumber = {2184382},
     zbl = {1081.31006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a17/}
}
TY  - JOUR
AU  - Miyamoto, I.
AU  - Yanagishita, M.
AU  - Yoshida, H.
TI  - On harmonic majorization of the Martin function at infinity in a cone
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 1041
EP  - 1054
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a17/
LA  - en
ID  - CMJ_2005_55_4_a17
ER  - 
%0 Journal Article
%A Miyamoto, I.
%A Yanagishita, M.
%A Yoshida, H.
%T On harmonic majorization of the Martin function at infinity in a cone
%J Czechoslovak Mathematical Journal
%D 2005
%P 1041-1054
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a17/
%G en
%F CMJ_2005_55_4_a17
Miyamoto, I.; Yanagishita, M.; Yoshida, H. On harmonic majorization of the Martin function at infinity in a cone. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1041-1054. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a17/

[1] H. Aikawa: Sets of determination for harmonic functions in an NTA  domain. J.  Math. Soc. Japan 48 (1996), 299-315. | DOI | MR | Zbl

[2] H.  Aikawa, M.  Essén: Potential Theory-Selected Topics. Lecture Notes in Math. Vol.  1633. Springer-Verlag, , 1996. | MR

[3] A.  Ancona: Positive Harmonic Functions and Hyperbolicity. Lecture Notes in Math. Vol. 1344, Springer-Verlag, 1987, pp. 1–23. | MR

[4] D. H. Armitage, Ü. Kuran: On positive harmonic majorization of  $y$ in $\mathbb{R}^{n}\times (0,+\infty )$. J.  London Math. Soc. Ser. II 3 (1971), 733–741. | MR

[5] D. H. Armitage, S. J. Gardiner: Classical Potential Theory. Springer-Verlag, , 2001. | MR

[6] V. S.  Azarin: Generalization of a theorem of Hayman on subharmonic functions in an $m$-dimensional cone Am. Math. Soc. Transl. II.  Ser. 80 (1969), 119–138.

[7] A.  Beurling: A minimum principle for positive harmonic functions. Ann. Acad. Sci. Fenn. Ser.  AI. Math. 372 (1965), . | MR | Zbl

[8] M.  Brelot: On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. Vol.  175. Springer-Verlag, , 1971. | MR

[9] R.  Courant, D.  Hilbert: Methods of Mathematical Physics, 1st English edition. Interscience, New York, 1954.

[10] B. E. J.  Dahlberg: A minimum principle for positive harmonic functions. Proc. London Math. Soc. 33 (1976), 2380–250. | MR | Zbl

[11] J. L.  Doob: Classical Potential Theory and its Probabilistic Counterpart. Springer-Verlag, 1984. | MR | Zbl

[12] D. S. Jerison, C. E. Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46 (1982), 80–147. | DOI | MR

[13] D.  Gilbarg, N. S.  Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977. | MR

[14] L. L.  Helms: Introduction to Potential Theory. Wiley, New York, 1969. | MR | Zbl

[15] V. G.  Maz’ya: Beurling’s theorem on a minimum principle for positive harmonic functions. Zapiski Nauchnykh Seminarov LOMI 30 (1972). | MR

[16] I.  Miyamoto, M.  Yanagishitam, and H.  Yoshida: Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone. Canad. Math. Bull. 46 (2003), 252–264. | DOI | MR

[17] I.  Miyamoto, H.  Yoshida: Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone. J.  Math. Soc. Japan 54 (2002), 487–512. | DOI | MR

[18] P.  Sjögren: Une propriété des fonctions harmoniques positives d’après Dahlberg, Séminaire de théorie du potentiel. Lecture Notes in Math. Vol.  563, Springer-Verlag, , 1976, pp. 275–282. | MR

[19] E. M.  Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970. | MR | Zbl

[20] H.  Yoshida: Nevanlinna norm of a subharmonic function on a cone or on a cylinder. Proc. London Math. Soc. Ser. III 54 (1987), 267–299. | MR | Zbl

[21] Y.  Zhang: Ensembles équivalents a un point frontière dans un domaine lipshitzien, Séminaire de théorie du potentiel. Lecture Note in Math. Vol. 1393, Springer-Verlag, , 1989, pp. 256–265. | MR