Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1003-1039
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property.
The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property.
Classification : 60G44, 60H05, 60H15
Keywords: Brownian representations; martingale problem; strong Markov property
@article{CMJ_2005_55_4_a16,
     author = {Ondrej\'at, Martin},
     title = {Brownian representations of cylindrical local martingales, martingale problem and strong {Markov} property of weak solutions of {SPDEs} in {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1003--1039},
     year = {2005},
     volume = {55},
     number = {4},
     mrnumber = {2184381},
     zbl = {1081.60049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a16/}
}
TY  - JOUR
AU  - Ondreját, Martin
TI  - Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 1003
EP  - 1039
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a16/
LA  - en
ID  - CMJ_2005_55_4_a16
ER  - 
%0 Journal Article
%A Ondreját, Martin
%T Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces
%J Czechoslovak Mathematical Journal
%D 2005
%P 1003-1039
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a16/
%G en
%F CMJ_2005_55_4_a16
Ondreját, Martin. Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1003-1039. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a16/

[1] Brzeźniak, Z.: On Stochastic Convolution in Banach Spaces and Applications. Stochastics and Stochastics Reports 61 (1997), 245–295. | DOI | MR

[2] Chojnowska-Michalik, A.: Stochastic Differential Equations in Hilbert Spaces. Probability Theory, Banach Center Publications, PWN, Warsaw 5, 1979, pp. 53–74. | MR | Zbl

[3] Da Prato, G. and Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992. | MR

[4] Dettweiler, E.: Representation of Banach space valued martingales as stochastic integrals. Probability in Banach spaces 7, Proc. 7th Int. Conf., Oberwolfach/FRG 1988, Prog. Probab. 21, 1990, pp. 43–62. | MR | Zbl

[5] Doob, J. L.: Stochastic Processes. J. Wiley & Sons, New York, 1953. | MR | Zbl

[6] Dunford, N. and Schwartz, J. T.: Linear operators, Part I: General theory. Interscience, New York, 1958. | MR

[7] Karatzas, I. and Shreve, S.: Brownian Motion and Stochastic Calculus. Springer-Verlag, New York. 1988. | MR

[8] Krylov, N. V.: Introduction to the Theory of Diffusion Processes. AMS, Providence, 1995. | MR | Zbl

[9] Kuratowski, K.: Topology, Vol. 1. Academic Press, New York and London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.

[10] Lepingle, D. and Ouvrard, J.-Y.: Martingales browniennes hilbertiennes. C. R. Acad. Sci. Paris Sér. A 276 (1973), 1225–1228. | MR

[11] Lisei, H.: The Markov property for the solution of the stochastic Navier-Stokes equation. Studia Univ. Babeş-Bolyai Math. 44 (1999), no. 4, 55–71. | MR | Zbl

[12] Métivier, M. and Pellaumail, J.: Stochastic Integration. Academic Press, New York-London-Toronto, Ont., 1980. | MR

[13] Neidhardt, A. L.: Stochastic Integrals in 2-Uniformly Smooth Banach Spaces. University of Wisconsin. 1978.

[14] Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Mathematicae 426 (2004), 1–63. | DOI | MR

[15] Ouvrard, J.-Y.: Répresentation de martingales vectorielles de carré intégrable à valeurs dans des espaces de Hilbert réels séparables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 195–208. | DOI | MR | Zbl

[16] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. | MR | Zbl

[17] Stroock, D. V.; and Varadhan, S. R. S.: Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233, Springer-Verlag, Berlin-New York. 1979. | MR