Keywords: Sullivan minimal model; orientable fibration; TNCZ; negative derivation
@article{CMJ_2005_55_4_a15,
author = {Yamaguchi, Toshihiro},
title = {An example of a fiber in fibrations whose {Serre} spectral sequences collapse},
journal = {Czechoslovak Mathematical Journal},
pages = {997--1001},
year = {2005},
volume = {55},
number = {4},
mrnumber = {2184380},
zbl = {1081.55010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a15/}
}
Yamaguchi, Toshihiro. An example of a fiber in fibrations whose Serre spectral sequences collapse. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 997-1001. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a15/
[1] I. Belegradek and V. Kapovitch: Obstructions to nonnegative curvature and rational homotopy theory. J. Amer. Math. Soc. 16 (2003), 259–284. | MR
[2] Y. Félix, S. Halperin and J. C. Thomas: Rational Homotopy Theory. Springer GTM, 205, New York, 2001. | MR
[3] S. Halperin: Rational fibrations, minimal models, and fibrings of homogeneous spaces. Trans. A.M.S. 244 (1978), 199–244. | DOI | MR | Zbl
[4] M. Markl: Towards one conjecture on collapsing of the Serre spectral sequence. Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 151–159. | MR | Zbl
[5] W. Meier: Rational universal fibrations and flag manifolds. Math. Ann. 258 (1982), 329–340. | DOI | MR | Zbl
[6] M. Schlessinger and J. Stasheff: Deformation theory and rational homotopy type. Preprint.
[7] D. Sullivan: Infinitesimal computations in topology. Publ. I.H.E.S. 47 (1977), 269–331. | DOI | MR | Zbl