Embedding sums of cancellative modes into semimodules
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 975-991
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A mode (idempotent and entropic algebra) is a Lallement sum of its cancellative submodes over a normal band if it has a congruence with a normal band quotient and cancellative congruence classes. We show that such a sum embeds as a subreduct into a semimodule over a certain ring, and discuss some consequences of this fact. The result generalizes a similar earlier result of the authors proved in the case when the normal band is a semilattice.
A mode (idempotent and entropic algebra) is a Lallement sum of its cancellative submodes over a normal band if it has a congruence with a normal band quotient and cancellative congruence classes. We show that such a sum embeds as a subreduct into a semimodule over a certain ring, and discuss some consequences of this fact. The result generalizes a similar earlier result of the authors proved in the case when the normal band is a semilattice.
Classification : 03C05, 08A05, 08C15
Keywords: modes (idempotent and entropic algebras); cancellative modes; sums of algebras; embeddings; semimodules over semirings; idempotent subreducts of semimodules
@article{CMJ_2005_55_4_a13,
     author = {Romanowska, Anna and Zamojska-Dzienio, Anna},
     title = {Embedding sums of cancellative modes into semimodules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {975--991},
     year = {2005},
     volume = {55},
     number = {4},
     mrnumber = {2184378},
     zbl = {1081.08003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a13/}
}
TY  - JOUR
AU  - Romanowska, Anna
AU  - Zamojska-Dzienio, Anna
TI  - Embedding sums of cancellative modes into semimodules
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 975
EP  - 991
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a13/
LA  - en
ID  - CMJ_2005_55_4_a13
ER  - 
%0 Journal Article
%A Romanowska, Anna
%A Zamojska-Dzienio, Anna
%T Embedding sums of cancellative modes into semimodules
%J Czechoslovak Mathematical Journal
%D 2005
%P 975-991
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a13/
%G en
%F CMJ_2005_55_4_a13
Romanowska, Anna; Zamojska-Dzienio, Anna. Embedding sums of cancellative modes into semimodules. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 975-991. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a13/

[1] J. S.  Golan: The Theory of Semirings. Longman, Harlow, 1992. | Zbl

[2] J. Ježek and T.  Kepka: Medial Grupoids. Rozpravy ČSAV, Řada Mat. Přír. Věd. 93/2. Academia, Praha, 1983. | MR

[3] K. Kearnes: Semilattice modes  I: the associated semiring. Algebra Universalis 34 (1995), 220–272. | DOI | MR | Zbl

[4] J. Kuras: Application of Agassiz Systems to Represantation of Sums of Equationally Defined Classes of Algebras. PhD. Thesis, M. Kopernik University, Toruń, 1985. (Polish)

[5] A. I. Mal’cev: Algebraic Systems. Springer-Verlag, Berlin, 1973. | MR

[6] A. B. Romanowska: An introduction to the theory of modes and modals. Contemp. Math. 131 (1992), 241–262. | MR | Zbl

[7] A. B. Romanowska and J. D. H.  Smith: Modal Theory. Heldermann, Berlin, 1985. | MR

[8] A. B. Romanowska and J. D. H.  Smith: On the structure of barycentric algebras. Houston J.  Math. 16 (1990), 431–448. | MR

[9] A. B. Romanowska and J. D. H.  Smith: On the structure of semilattice sums. Czechoslovak Math.  J. 41 (1991), 24–43. | MR

[10] A. B. Romanowska and J. D. H.  Smith: Embedding sums of cancellative modes into functorial sums of affine spaces. In: Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki’s 80th Birthday, J. M. Abe, S. Tanaka (eds.), IOS Press, Amsterdam, 2001, pp. 127–139. | MR

[11] A. B. Romanowska, and J. D. H. Smith: Modes. World Scientific, Singapore, 2002. | MR

[12] A. B. Romanowska and S.  Traina: Algebraic quasi-orders and sums of algebras. Discuss. Math. Algebra & Stochastic Methods 19 (1999), 239–263. | MR

[13] A. B. Romanowska and A.  Zamojska-Dzienio: Embedding semilattice sums of cancellative modes into semimodules. Contributions to General Algebra 13 (2001), 295–303. | MR

[14] J. D. H. Smith: Modes and modals. Discuss. Math. Algebra & Stochastic Methods 19 (1999), 9–40. | MR | Zbl