Strong projectability of lattice ordered groups
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 957-973
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove that the lateral completion of a projectable lattice ordered group is strongly projectable. Further, we deal with some properties of Specker lattice ordered groups which are related to lateral completeness and strong projectability.
In this paper we prove that the lateral completion of a projectable lattice ordered group is strongly projectable. Further, we deal with some properties of Specker lattice ordered groups which are related to lateral completeness and strong projectability.
Classification : 06F20
Keywords: Lattice ordered group; projectability; strong projectability; lateral completion; orthocompletion; Specker lattice ordered group
@article{CMJ_2005_55_4_a12,
     author = {Jakub{\'\i}k, J\'an},
     title = {Strong projectability of lattice ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {957--973},
     year = {2005},
     volume = {55},
     number = {4},
     mrnumber = {2184377},
     zbl = {1081.06023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a12/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Strong projectability of lattice ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 957
EP  - 973
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a12/
LA  - en
ID  - CMJ_2005_55_4_a12
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Strong projectability of lattice ordered groups
%J Czechoslovak Mathematical Journal
%D 2005
%P 957-973
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a12/
%G en
%F CMJ_2005_55_4_a12
Jakubík, Ján. Strong projectability of lattice ordered groups. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 957-973. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a12/

[1] S. J.  Bernau: The lateral completion of an arbitrary lattice group. J.  Austral. Math. Soc. 19 (1975), 263–289. | DOI | MR | Zbl

[2] S. J.  Bernau: Lateral and Dedekind completion of archimedean lattice groups. J.  London Math. Soc. 12 (1976), 320–322. | DOI | MR | Zbl

[3] R. D.  Bleier: The ${\mathrm SP}$-hull of a lattice-ordered group. Canadian J.  Math. 26 (1974), 866–878. | DOI | MR

[4] R. D.  Bleier: The orthocompletion of a lattice-ordered group. Indagationes Math. 38 (1976), 1–7. | DOI | MR | Zbl

[5] D.  Byrd and T. J.  Lloyd: A note on lateral completion in lattice ordered groups. J.  London Math. Soc. 1 (1969), 358–362. | DOI | MR

[6] D. A.  Chambless: Representation of the projectable and strongly projectable hulls of a lattice ordered group. Proc. Amer. Math. Soc. 19 (1975), 263–289. | MR

[7] P. F.  Conrad: Lateral completion of lattice ordered groups. Proc. London Math. Soc. 19 (1969), 444–480. | DOI | MR

[8] P. F.  Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl

[9] P. F.  Conrad: The hulls of representable $\ell $-groups and $f$-rings. J.  Austral. Math. Soc. 16 (1973), 385–415. | DOI | MR

[10] P. F.  Conrad: Epi-Archimedean $\ell $-groups. Czechoslovak Math.  J. 24 (1974), 192–218. | MR

[11] P. F.  Conrad and M. R.  Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. | DOI | MR

[12] M. R.  Darnel: The Theory of Lattice Ordered Groups. Marcel Dekker, New York-Basel, 1995. | MR

[13] J.  Jakubík: Representations and extensions of $\ell $-groups. Czechoslovak Math.  J. 13 (1963), 267–282. (Russian)

[14] J.  Jakubík: Lateral and Dedekind completions of strongly projectable lattice ordered groups. Czechoslovak Math.  J 47 (1997), 511–523. | DOI | MR

[15] J.  Jakubík: Orthogonal hull of a strongly projectable lattice ordered group. Czechoslovak Math.  J. 28 (1978), 484–504. | MR

[17] J.  Jakubík: Torsion classes of Specker lattice ordered groups. Czechoslovak Math.  J. 52 (2002), 469–482. | DOI | MR

[18] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen. Čas. pěst. mat. 84 (1959), 53–63. | MR

[19] K.  Keimel: Représentation de groupes et d’anneaux réticulés par des sections dans des faisceaux. PhD. Thesis, Université de Paris, 1970. | Zbl

[20] G. Ya.  Rotkovich: On some kinds of completeness in archimedean lattice ordered groups. Funkc. anal. 9 (1977), 138–143. (Russian)

[21] R.  Sikorski: Boolean Algebras. Second Edition, Springer-Verlag, Berlin, 1964. | MR | Zbl

[22] E. C.  Smith Jr. and A.  Tarski: Higher degrees of distributivity and completeness in Boolean algebras. Trans. Amer. Math. Soc. 84 (1957), 230–257. | DOI | MR