The quasi-canonical solution operator to $\bar{\partial}$ restricted to the Fock-space
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 947-956
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the solution operator $S\:\mathcal F_{\mu ,(p,q)}\rightarrow L^2(\mu )_{(p,q)}$ to the $\bar{\partial }$-operator restricted to forms with coefficients in $\mathcal F_{\mu }= \bigl \lbrace f\: f \text{is} \text{entire} \text{and} \int _{\mathbb{C}^n} |f(z)|^2\mathrm{d}\mu (z) \infty \bigr \rbrace $. Here $\mathcal F_{\mu ,(p,q)}$ denotes $(p,q)$-forms with coefficients in $\mathcal F_{\mu }$, $L^2(\mu )$ is the corresponding $L^2$-space and $\mu $ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula $S$ to $\bar{\partial }$. This solution operator will have the property $Sv\bot \mathcal F_{(p,q)}\, \forall \,v \in \mathcal F_{(p,q+1)}$. As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators of Toeplitz-operators $[T_{\bar{z_i}},T_{z_i}]= [T^*_{{z_i}},T_{z_i}]\:\mathcal F_\mu \rightarrow L^2(\mu )$.
We consider the solution operator $S\:\mathcal F_{\mu ,(p,q)}\rightarrow L^2(\mu )_{(p,q)}$ to the $\bar{\partial }$-operator restricted to forms with coefficients in $\mathcal F_{\mu }= \bigl \lbrace f\: f \text{is} \text{entire} \text{and} \int _{\mathbb{C}^n} |f(z)|^2\mathrm{d}\mu (z) \infty \bigr \rbrace $. Here $\mathcal F_{\mu ,(p,q)}$ denotes $(p,q)$-forms with coefficients in $\mathcal F_{\mu }$, $L^2(\mu )$ is the corresponding $L^2$-space and $\mu $ is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula $S$ to $\bar{\partial }$. This solution operator will have the property $Sv\bot \mathcal F_{(p,q)}\, \forall \,v \in \mathcal F_{(p,q+1)}$. As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators of Toeplitz-operators $[T_{\bar{z_i}},T_{z_i}]= [T^*_{{z_i}},T_{z_i}]\:\mathcal F_\mu \rightarrow L^2(\mu )$.
Classification : 32A15, 32W05, 35N15, 47B35
Keywords: Fock-space; Hankel-operator; reproducing kernel
@article{CMJ_2005_55_4_a11,
     author = {Schneider, Georg},
     title = {The quasi-canonical solution operator to $\bar{\partial}$ restricted to the {Fock-space}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {947--956},
     year = {2005},
     volume = {55},
     number = {4},
     mrnumber = {2184376},
     zbl = {1081.47035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a11/}
}
TY  - JOUR
AU  - Schneider, Georg
TI  - The quasi-canonical solution operator to $\bar{\partial}$ restricted to the Fock-space
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 947
EP  - 956
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a11/
LA  - en
ID  - CMJ_2005_55_4_a11
ER  - 
%0 Journal Article
%A Schneider, Georg
%T The quasi-canonical solution operator to $\bar{\partial}$ restricted to the Fock-space
%J Czechoslovak Mathematical Journal
%D 2005
%P 947-956
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a11/
%G en
%F CMJ_2005_55_4_a11
Schneider, Georg. The quasi-canonical solution operator to $\bar{\partial}$ restricted to the Fock-space. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 947-956. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a11/

[1] V.  Bargmann: On a Hilbert Space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14 (1961), 187–214. | DOI | MR | Zbl

[2] S.  Fu and E.  Straube: Compactness in the $\bar{\partial }$-Neumann problem. In: Proc. conf. Complex analysis and geometry, Ohio, Ohio State Univ. Math. Res Inst. Publ., 2001, pp. 141–160. | MR

[3] L.  Hörmander: $L^2$-estimates and existence theorems for the $\bar{\partial }$  operator. Acta Math. 113 (1965), 89–152. | DOI | MR

[4] S.  Axler: The Bergman space, the Bloch space, and commutators of multiplikation-operators. Duke Math.  J. 53 (1986), 315–332. | MR

[5] J.  Arazy, S.  Fischer and J.  Peetre: Hankel-operators on weighted Bergman spaces. Amer. J.  Math. 110 (1988), 989–1053. | DOI | MR

[6] F. F.  Bonsall: Hankel-operators on the Bergman space for the disc. J.  London Math. Soc. 33 (1986), 355–364. | DOI | MR | Zbl

[7] S.  Janson: Hankel-operators between weighted Bergman spaces. Ark. Math. 26 (1988), 205–219. | DOI | MR

[8] R.  Rochberg: Trace ideal criteria for Hankel-operators and commutators. Indiana Univ. Math.  J. 31 (1982), 913–925. | DOI | MR | Zbl

[9] R.  Wallsten: Hankel-operators between weighted Bergman-spaces in the ball. Ark. Math. 28 (1990), 183–192. | DOI | MR | Zbl

[10] K. H.  Zhu: Hilbert-Schmidt Hankel-operators on the Bergman space. Proc. Amer. Math. Soc. 109 (1990), 721–730. | DOI | MR | Zbl

[11] F.  Haslinger: The canonical solution operator to  $\bar{\partial }$ restricted to spaces of entire functions. Ann. Fac. Sci. Toulouse Math. 11 (2002), 57–70. | DOI | MR

[12] F.  Haslinger: The canonical solution operator to  $\bar{\partial }$ restricted to Bergman-spaces. Proc. Amer. Math. Soc. 129 (2001), 3321–3329. | DOI | MR

[13] L.  Hörmander: An Introduction to Complex Analysis in Several Variables. Von Nostand, Princeton, 1966. | MR

[14] W.  Knirsch: Kompaktheit des $\bar{\partial }$-Neumann Operators. Dissertation, Universität Wien, Wien, 2000.

[15] N.  Salinas, A.  Sheu and H.  Upmeier: Toeplitz-operators on pseudoconvex domains and foliation $C^*$-algebras. Ann. Math. 130 (1989), 531–565. | DOI | MR

[16] G.  Schneider: Hankel-operators with anti-holomorphic symbols on the Fock-space. Proc. Amer. Math. Soc. 132 (2004), 2399–2409. | DOI | MR

[17] G.  Schneider: Non-compactness of the solution operator to $\bar{\partial }$ on the Fock-space in several dimensions. Math. Nachr. 278 (2005), 312–317. | DOI | MR

[18] S.  Krantz: Compactness of the $\bar{\partial }$-Neumann operator. Proc. Amer. Math. Soc. 103 (1988), 1136–1138. | DOI | MR | Zbl

[19] S.  Fu and E.  Straube: Compactness of the $\bar{\partial }$-Neumann problem on convex domains. J.  Functional Analysis 159 (1998), 629–641. | DOI | MR