Keywords: Fock-space; Hankel-operator; reproducing kernel
@article{CMJ_2005_55_4_a11,
author = {Schneider, Georg},
title = {The quasi-canonical solution operator to $\bar{\partial}$ restricted to the {Fock-space}},
journal = {Czechoslovak Mathematical Journal},
pages = {947--956},
year = {2005},
volume = {55},
number = {4},
mrnumber = {2184376},
zbl = {1081.47035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a11/}
}
Schneider, Georg. The quasi-canonical solution operator to $\bar{\partial}$ restricted to the Fock-space. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 947-956. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a11/
[1] V. Bargmann: On a Hilbert Space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14 (1961), 187–214. | DOI | MR | Zbl
[2] S. Fu and E. Straube: Compactness in the $\bar{\partial }$-Neumann problem. In: Proc. conf. Complex analysis and geometry, Ohio, Ohio State Univ. Math. Res Inst. Publ., 2001, pp. 141–160. | MR
[3] L. Hörmander: $L^2$-estimates and existence theorems for the $\bar{\partial }$ operator. Acta Math. 113 (1965), 89–152. | DOI | MR
[4] S. Axler: The Bergman space, the Bloch space, and commutators of multiplikation-operators. Duke Math. J. 53 (1986), 315–332. | MR
[5] J. Arazy, S. Fischer and J. Peetre: Hankel-operators on weighted Bergman spaces. Amer. J. Math. 110 (1988), 989–1053. | DOI | MR
[6] F. F. Bonsall: Hankel-operators on the Bergman space for the disc. J. London Math. Soc. 33 (1986), 355–364. | DOI | MR | Zbl
[7] S. Janson: Hankel-operators between weighted Bergman spaces. Ark. Math. 26 (1988), 205–219. | DOI | MR
[8] R. Rochberg: Trace ideal criteria for Hankel-operators and commutators. Indiana Univ. Math. J. 31 (1982), 913–925. | DOI | MR | Zbl
[9] R. Wallsten: Hankel-operators between weighted Bergman-spaces in the ball. Ark. Math. 28 (1990), 183–192. | DOI | MR | Zbl
[10] K. H. Zhu: Hilbert-Schmidt Hankel-operators on the Bergman space. Proc. Amer. Math. Soc. 109 (1990), 721–730. | DOI | MR | Zbl
[11] F. Haslinger: The canonical solution operator to $\bar{\partial }$ restricted to spaces of entire functions. Ann. Fac. Sci. Toulouse Math. 11 (2002), 57–70. | DOI | MR
[12] F. Haslinger: The canonical solution operator to $\bar{\partial }$ restricted to Bergman-spaces. Proc. Amer. Math. Soc. 129 (2001), 3321–3329. | DOI | MR
[13] L. Hörmander: An Introduction to Complex Analysis in Several Variables. Von Nostand, Princeton, 1966. | MR
[14] W. Knirsch: Kompaktheit des $\bar{\partial }$-Neumann Operators. Dissertation, Universität Wien, Wien, 2000.
[15] N. Salinas, A. Sheu and H. Upmeier: Toeplitz-operators on pseudoconvex domains and foliation $C^*$-algebras. Ann. Math. 130 (1989), 531–565. | DOI | MR
[16] G. Schneider: Hankel-operators with anti-holomorphic symbols on the Fock-space. Proc. Amer. Math. Soc. 132 (2004), 2399–2409. | DOI | MR
[17] G. Schneider: Non-compactness of the solution operator to $\bar{\partial }$ on the Fock-space in several dimensions. Math. Nachr. 278 (2005), 312–317. | DOI | MR
[18] S. Krantz: Compactness of the $\bar{\partial }$-Neumann operator. Proc. Amer. Math. Soc. 103 (1988), 1136–1138. | DOI | MR | Zbl
[19] S. Fu and E. Straube: Compactness of the $\bar{\partial }$-Neumann problem on convex domains. J. Functional Analysis 159 (1998), 629–641. | DOI | MR