On $k$-spaces and $k_R$-spaces
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 941-945
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we study the relation between $k_R$-spaces and $k$-spaces and prove that a $k_R$-space with a $\sigma $-hereditarily closure-preserving $k$-network consisting of compact subsets is a $k$-space, and that a $k_R$-space with a point-countable $k$-network consisting of compact subsets need not be a $k$-space.
In this note we study the relation between $k_R$-spaces and $k$-spaces and prove that a $k_R$-space with a $\sigma $-hereditarily closure-preserving $k$-network consisting of compact subsets is a $k$-space, and that a $k_R$-space with a point-countable $k$-network consisting of compact subsets need not be a $k$-space.
Classification : 54C30, 54D50
Keywords: $k_R$-spaces; $k$-spaces; $k$-networks; $\sigma $-hereditarily closure-preserving collections; point-countable collections
@article{CMJ_2005_55_4_a10,
     author = {Li, Jinjin},
     title = {On $k$-spaces and $k_R$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {941--945},
     year = {2005},
     volume = {55},
     number = {4},
     mrnumber = {2184375},
     zbl = {1081.54021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a10/}
}
TY  - JOUR
AU  - Li, Jinjin
TI  - On $k$-spaces and $k_R$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 941
EP  - 945
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a10/
LA  - en
ID  - CMJ_2005_55_4_a10
ER  - 
%0 Journal Article
%A Li, Jinjin
%T On $k$-spaces and $k_R$-spaces
%J Czechoslovak Mathematical Journal
%D 2005
%P 941-945
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a10/
%G en
%F CMJ_2005_55_4_a10
Li, Jinjin. On $k$-spaces and $k_R$-spaces. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 941-945. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a10/

[1] V. Pták: On complete topological linear spaces. Czechoslovak Math.  J. 3(78) (1953), 301–364. (Russian, English Summary) | MR

[2] E. Michael: On $k$-spaces, $k_R$-spaces and $k(X)$. Pac. J.  Math. 47 (1973), 487–498. | MR | Zbl

[3] S. Lin: Note on $k_R$-space. Quest. Answers Gen. Topology 9 (1991), 227–236. | MR

[4] S. Lin: On $R$-quotient $ss$-mappings. Acta Math. Sin. 34 (1991), 7–11. (Chinese) | MR | Zbl

[5] Z. Yun: On $k_R$-spaces and $k$-spaces. Adv. Math., Beijing 29 (2000), 223–226. | MR | Zbl

[6] P. O’Meara: On paracompactness in function spaces with the compact-open topology. Proc. Am. Math. Soc. 29 (1971), 183–189. | MR

[7] Jinjin Li: $k$-covers and certain quotient images of paracompact locally compact spaces. Acta Math. Hungar 95 (2002), 281–286. | DOI | MR

[8] R. Borges: A stratifiable $k_R$-space which is not a $k$-space. Proc. Am. Math. Soc. 81 (1981), 308–310. | MR | Zbl