Keywords: multi-valued map; Mann iterates; Ishikawa iterates; fixed points
@article{CMJ_2005_55_4_a0,
author = {Sastry, K. P. R. and Babu, G. V. R.},
title = {Convergence of {Ishikawa} iterates for a multi-valued mapping with a fixed point},
journal = {Czechoslovak Mathematical Journal},
pages = {817--826},
year = {2005},
volume = {55},
number = {4},
mrnumber = {2184365},
zbl = {1081.47069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a0/}
}
TY - JOUR AU - Sastry, K. P. R. AU - Babu, G. V. R. TI - Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point JO - Czechoslovak Mathematical Journal PY - 2005 SP - 817 EP - 826 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a0/ LA - en ID - CMJ_2005_55_4_a0 ER -
Sastry, K. P. R.; Babu, G. V. R. Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 817-826. http://geodesic.mathdoc.fr/item/CMJ_2005_55_4_a0/
[1] P. Z. Daffer and H. Kaneko: Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 192 (1995), 655–666. | DOI | MR
[2] R. L. Franks and R. P. Marzec: A theorem on mean value iterations. Proc. Amer. Math. Soc. 30 (1971), 324–326. | DOI | MR
[3] S. Ishikawa: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | DOI | MR | Zbl
[4] A. K. Kalinde and B. E. Rhoades: Fixed point Ishikawa iterations. J. Math. Anal. Appl. 170 (1992), 600–606. | DOI | MR
[5] H. Kaneko: Generalized contractive multi-valued mappings and their fixed points. Math. Japon. 33 (1988), 57–64. | MR
[6] W. R. Mann: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506–510. | DOI | MR
[7] N. Mizoguchi and W. Takahashi: Fixed point theorems for multi-valued mappings on complete metric spaces. J. Math. Anal. Appl. 141 (1989), 177–188. | DOI | MR
[8] Liu Qihou: On Naimpally and Singh’s open questions. J. Math. Anal. Appl. 124 (1987), 157–164. | DOI | MR | Zbl
[9] Liu Qihou: A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings. J. Math. Anal. Appl. 146 (1990), 301–305. | DOI | MR | Zbl
[10] B. E. Rhoades: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56 (1976), 741–750. | DOI | MR | Zbl