$w^*$-basic sequences and reflexivity of Banach spaces
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 677-681
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We observe that a separable Banach space $X$ is reflexive iff each of its quotients with Schauder basis is reflexive. Similarly if $\mathcal L(X,Y)$ is not reflexive for reflexive $X$ and $Y$ then $\mathcal L(X_1, Y)$ is is not reflexive for some $X_1\subset X$, $X_1$ having a basis.
We observe that a separable Banach space $X$ is reflexive iff each of its quotients with Schauder basis is reflexive. Similarly if $\mathcal L(X,Y)$ is not reflexive for reflexive $X$ and $Y$ then $\mathcal L(X_1, Y)$ is is not reflexive for some $X_1\subset X$, $X_1$ having a basis.
Classification : 46B10, 46B15, 46B28
Keywords: reflexive Banach space; Schauder basis; quotient space; w$^*$-basic sequence; tensor product
@article{CMJ_2005_55_3_a8,
     author = {John, Kamil},
     title = {$w^*$-basic sequences and reflexivity of {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {677--681},
     year = {2005},
     volume = {55},
     number = {3},
     mrnumber = {2153091},
     zbl = {1081.46017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a8/}
}
TY  - JOUR
AU  - John, Kamil
TI  - $w^*$-basic sequences and reflexivity of Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 677
EP  - 681
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a8/
LA  - en
ID  - CMJ_2005_55_3_a8
ER  - 
%0 Journal Article
%A John, Kamil
%T $w^*$-basic sequences and reflexivity of Banach spaces
%J Czechoslovak Mathematical Journal
%D 2005
%P 677-681
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a8/
%G en
%F CMJ_2005_55_3_a8
John, Kamil. $w^*$-basic sequences and reflexivity of Banach spaces. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 677-681. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a8/

[1] W. J.  Davis and J.  Lindenstrauss: On total nonnorming subspaces. Proc. Amer. Math. Soc. 31 (1972), 109–111. | DOI | MR

[2] J.  Diestel: Sequences and Series in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1984. | MR

[3] M.  Fabian, P.  Habala, P.  Hájek, J.  Pelant, V. Montesinos and V. Zizler: Functional Analysis and Infinite Dimensional Geometry. Canad. Math. Soc. Books in Mathematics Springer-Verlag, New York, 2001. | MR

[4] S.  Heinrich: On the reflexivity of the Banach space  $L(X,Y)$. Funkts. Anal. Prilozh. 8 (1974), 97–98. (Russian) | MR

[5] J. R.  Holub: Reflexivity of  $L(E,F)$. Proc. Amer. Math. Soc. 39 (1974), 175–177. | MR

[6] H.  Jarchow: Locally Convex Spaces. Teubner-Verlag, Stuttgart, 1981. | MR | Zbl

[7] W. B.  Johnson and H. P.  Rosenthal: On w$^*$  basic sequences and their applications to the study of Banach spaces. Studia Math. 43 (1972), 77–92. | DOI | MR

[8] J.  Lindenstrauss and L.  Tzafriri: Classical Banach Spaces I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete  92. Springer-Verlag, Berlin-Heidelberg-Berlin, 1977. | MR

[9] J.  Mujica: Reflexive spaces of homogeneous polynomials. Bull. Polish Acad. Sci. Math. 49 (2001), 211–222. | MR | Zbl

[10] A.  Pełczyński: A note on the paper of I.  Singer “Basic sequences and reflexivity of Banach spaces”. Studia Math. 21 (1962), 371–374. | DOI | MR

[11] V.  Pták: Biorthogonal systems and reflexivity of Banach spaces. Czechoslovak Math.  J. 9 (1959), 319–325. | MR

[12] W. Ruckle: Reflexivity of $L(E,F)$. Proc. Am. Math. Soc. 34 (1972), 171–174. | MR | Zbl

[13] I.  Singer: Basic sequences and reflexivity of Banach spaces. Studia Math. 21 (1962), 351–369. | DOI | MR | Zbl