Keywords: generalized Riemann approach; stochastic integral; integration-by-parts
@article{CMJ_2005_55_3_a6,
author = {Toh, Tin-Lam and Chew, Tuan-Seng},
title = {On {It\^o-Kurzweil-Henstock} integral and integration-by-part formula},
journal = {Czechoslovak Mathematical Journal},
pages = {653--663},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153089},
zbl = {1081.26005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a6/}
}
Toh, Tin-Lam; Chew, Tuan-Seng. On Itô-Kurzweil-Henstock integral and integration-by-part formula. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 653-663. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a6/
[1] T. S. Chew, J. Y. Tay and T. L. Toh: The non-uniform Riemann approach to Itô’s integral. Real Anal. Exchange 27 (2001/2002), 495–514. | MR
[2] R. Henstock: The efficiency of convergence factors for functions of a continuous real variable. J. London Math. Soc. 30 (1955), 273–286. | DOI | MR | Zbl
[3] R. Henstock: Lectures on the Theory of Integration. World Scientific, Singapore, 1988. | MR | Zbl
[4] R. Henstock: The General Theory of Integration. Oxford Science, , 1991. | MR | Zbl
[5] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (1957), 418–446. | MR | Zbl
[6] E. J. McShane: Stochastic Calculus and Stochastic Models. Academic Press, New York, 1974. | MR | Zbl
[7] Z. R. Pop-Stojanović: On McShane’s belated stochastic integral. SIAM J. Appl. Math. 22 (1972), 89–92. | DOI | MR
[8] P. Protter: A comparison of stochastic integrals. Ann. Probability 7 (1979), 276–289. | DOI | MR | Zbl
[9] P. Protter: Stochastic Integration and Differential Equations. Springer, New York, 1990. | MR | Zbl
[10] T. L. Toh and T. S. Chew: A variational approach to Itô’s integral. Proceedings of SAP’s 98, Taiwan P291-299, World Scientifc, Singapore, 1999. | MR
[11] T. L. Toh and T. S. Chew: The Riemann approach to stochastic integration using non-uniform meshes. J. Math. Anal. Appl. 280 (2003), 133–147. | DOI | MR
[12] T. L. Toh: The Riemann approach to stochastic integration. PhD. Thesis, National University of Singapore, Singapore, 2001.
[13] J. G. Xu and P. Y. Lee: Stochastic integrals of Itô and Henstock. Real Anal. Exchange 18 (1992/3), 352–366. | MR