Keywords: $n$-parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution
@article{CMJ_2005_55_3_a5,
author = {Guo, Yanping and Gao, Ying},
title = {The method of upper and lower solutions for a {Lidstone} boundary value problem},
journal = {Czechoslovak Mathematical Journal},
pages = {639--652},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153088},
zbl = {1081.34019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a5/}
}
Guo, Yanping; Gao, Ying. The method of upper and lower solutions for a Lidstone boundary value problem. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 639-652. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a5/
[1] A. R. Aftabizadeh: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 116 (1986), 415–426. | DOI | MR | Zbl
[2] C. De Coster, C. Fabry and F. Munyamarere: Nonresonance conditions for fourth-order nonlinear boundary problems. Internat. J. Math. Sci. 17 (1994), 725–740. | DOI | MR
[3] M. A. Del Pino and R. F. Manasevich: Existence for a fourth-order boundary value problem under a two parameter nonresonance condition. Proc. Amer. Math. Soc. 112 (1991), 81–86. | DOI | MR
[4] C. P. Gupta: Existence and uniqueness theorem for a bending of an elastic beam equation. Appl. Anal. 26 (1988), 289–304. | DOI | MR
[5] R. A. Usmani: A uniqueness theorem for a boundary value problem. Proc. Amer. Math. Soc. 77 (1979), 327–335. | DOI | MR | Zbl
[6] R. Agarwal: On fourth-order boundary value problems arising in beam analysis. Differential Integral Equations 2 (1989), 91–110. | MR | Zbl
[7] A. Cabada: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J. Math. Anal. Appl. 185 (1994), 302–320. | DOI | MR | Zbl
[8] C. De Coster and L. Sanchez: Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E. Riv. Mat. Pura. Appl. 14 (1994), 1129–1138. | MR
[9] P. Korman: A maximum principle for fourth-order ordinary differential equations. Appl. Anal. 33 (1989), 267–273. | DOI | MR | Zbl
[10] J. Schröder: Fourth-order two-point boundary value problems. Nonlinear Anal. 8 (1984), 107–114. | DOI
[11] Zhanbing Bai: The method of lower and upper solutions for a bending of an elastic beam equation. J. Math. Anal. Appl. 248 (2000), 195–402. | DOI | MR
[12] R. Y. Ma, J. H. Zhang and S. M. Fu: The method of lower and upper solutions for fourth-order two-point boundary value problems. J. Math. Anal. Appl. 215 (1997), 415–422. | DOI | MR
[13] J. M. Davis and J. Henderson: Triple positive symmetric solutions for a Lidstone boundary value problem. Differential Equations Dynam. Systems 7 (1999), 321–330. | MR
[14] J. M. Davis, P. W. Eloe and J. Henderson: Triple positive solutions and dependence on higher order derivatives. J. Math. Anal. Appl. 237 (1999), 710–720. | DOI | MR
[15] J. M. Davis, J. Henderson and P. J. Y. Wong: General Lidstone problems: multiplicity and symmetry of solutions. J. Math. Anal. Appl. 251 (2000), 527–548. | DOI | MR
[16] D. Gilbarg and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 1977. | MR