The method of upper and lower solutions for a Lidstone boundary value problem
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 639-652
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^{(2n)}(t)=f(t,u(t),u^{\prime \prime }(t),\dots ,u^{(2(n-1))}(t)),\quad 0
In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^{(2n)}(t)=f(t,u(t),u^{\prime \prime }(t),\dots ,u^{(2(n-1))}(t)),\quad 01, u^{(2i)}(0)=u^{(2i)}(1)=0,\quad 0\le i\le n-1, \] where $f\:[0,1]\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ is continuous. We obtain sufficient conditions on $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem.
Classification : 34B15
Keywords: $n$-parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution
@article{CMJ_2005_55_3_a5,
     author = {Guo, Yanping and Gao, Ying},
     title = {The method of upper and lower solutions for a {Lidstone} boundary value problem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {639--652},
     year = {2005},
     volume = {55},
     number = {3},
     mrnumber = {2153088},
     zbl = {1081.34019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a5/}
}
TY  - JOUR
AU  - Guo, Yanping
AU  - Gao, Ying
TI  - The method of upper and lower solutions for a Lidstone boundary value problem
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 639
EP  - 652
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a5/
LA  - en
ID  - CMJ_2005_55_3_a5
ER  - 
%0 Journal Article
%A Guo, Yanping
%A Gao, Ying
%T The method of upper and lower solutions for a Lidstone boundary value problem
%J Czechoslovak Mathematical Journal
%D 2005
%P 639-652
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a5/
%G en
%F CMJ_2005_55_3_a5
Guo, Yanping; Gao, Ying. The method of upper and lower solutions for a Lidstone boundary value problem. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 639-652. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a5/

[1] A.  R.  Aftabizadeh: Existence and uniqueness theorems for fourth-order boundary value problems. J.  Math. Anal. Appl. 116 (1986), 415–426. | DOI | MR | Zbl

[2] C. De Coster, C.  Fabry and F.  Munyamarere: Nonresonance conditions for fourth-order nonlinear boundary problems. Internat. J.  Math. Sci. 17 (1994), 725–740. | DOI | MR

[3] M. A. Del Pino and R. F.  Manasevich: Existence for a fourth-order boundary value problem under a two parameter nonresonance condition. Proc. Amer. Math. Soc. 112 (1991), 81–86. | DOI | MR

[4] C. P.  Gupta: Existence and uniqueness theorem for a bending of an elastic beam equation. Appl. Anal. 26 (1988), 289–304. | DOI | MR

[5] R. A.  Usmani: A uniqueness theorem for a boundary value problem. Proc. Amer. Math. Soc. 77 (1979), 327–335. | DOI | MR | Zbl

[6] R.  Agarwal: On fourth-order boundary value problems arising in beam analysis. Differential Integral Equations 2 (1989), 91–110. | MR | Zbl

[7] A.  Cabada: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J.  Math. Anal. Appl. 185 (1994), 302–320. | DOI | MR | Zbl

[8] C.  De Coster and L.  Sanchez: Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E. Riv. Mat. Pura. Appl. 14 (1994), 1129–1138. | MR

[9] P.  Korman: A maximum principle for fourth-order ordinary differential equations. Appl. Anal. 33 (1989), 267–273. | DOI | MR | Zbl

[10] J.  Schröder: Fourth-order two-point boundary value problems. Nonlinear Anal. 8 (1984), 107–114. | DOI

[11] Zhanbing Bai: The method of lower and upper solutions for a bending of an elastic beam equation. J.  Math. Anal. Appl. 248 (2000), 195–402. | DOI | MR

[12] R. Y.  Ma, J. H. Zhang and S. M.  Fu: The method of lower and upper solutions for fourth-order two-point boundary value problems. J.  Math. Anal. Appl. 215 (1997), 415–422. | DOI | MR

[13] J. M.  Davis and J.  Henderson: Triple positive symmetric solutions for a Lidstone boundary value problem. Differential Equations Dynam. Systems 7 (1999), 321–330. | MR

[14] J. M.  Davis, P. W.  Eloe and J.  Henderson: Triple positive solutions and dependence on higher order derivatives. J.  Math. Anal. Appl. 237 (1999), 710–720. | DOI | MR

[15] J. M.  Davis, J.  Henderson and P. J. Y.  Wong: General Lidstone problems: multiplicity and symmetry of solutions. J. Math. Anal. Appl. 251 (2000), 527–548. | DOI | MR

[16] D. Gilbarg and N. S.  Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 1977. | MR