Keywords: generalized absolute continuity; Henstock-Kurzweil integral
@article{CMJ_2005_55_3_a4,
author = {Tuo-Yeong, Lee},
title = {Some full descriptive characterizations of the {Henstock-Kurzweil} integral in the {Euclidean} space},
journal = {Czechoslovak Mathematical Journal},
pages = {625--637},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153087},
zbl = {1081.26008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a4/}
}
TY - JOUR AU - Tuo-Yeong, Lee TI - Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space JO - Czechoslovak Mathematical Journal PY - 2005 SP - 625 EP - 637 VL - 55 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a4/ LA - en ID - CMJ_2005_55_3_a4 ER -
Tuo-Yeong, Lee. Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 625-637. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a4/
[1] A. M. Bruckner, J. B. Bruckner and B. S. Thomson: Real Analysis. Prentice-Hall, , 1997.
[2] Z. Buczolich: Henstock integrable functions are Lebesgue integrable on a portion. Proc. American Math. Soc. 111 (1991), 127–129. | DOI | MR | Zbl
[3] Claude-Alain Faure: A descriptive definition of some multidimensional gauge integrals. Czechoslovak Math. J. 45 (1995), 549–562. | MR
[4] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics Vol. 4. AMS, Providence, 1994. | MR
[5] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (1995), 79–106. | MR
[6] W. B. Jurkat and R. W. Knizia: A characterization of multi-dimensional Perron integrals and the fundamental theorem. Canad. J. Math. 43 (1991), 526–539. | DOI | MR
[7] J. Kurzweil and J. Jarník: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exchange 17 (1991/92), 110–139. | MR
[8] J. Kurzweil and J. Jarník: Differentability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138–151. | DOI | MR
[9] Lee Peng Yee and Ng Wee Leng: The Radon-Nikodým theorem for the Henstock integral in Euclidean space. Real Anal. Exchange 22 (1996/97), 677–687. | MR
[10] Lee Peng Yee and Rudolf Výborný: The integral, an easy approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press, Cambridge, 2000. | MR
[11] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: On Henstock integrability in Euclidean spaces. Real Anal. Exchange 22 (1996/97), 382–389. | MR
[12] Lee Tuo Yeong: A full characterization of multipliers for the strong $\rho $-integral in the Euclidean space. Czechoslovak Math. J. 54 (2004), 657–674. | DOI | MR
[13] Lee Tuo Yeong: The sharp Riesz-type definition for the Henstock-Kurzweil integral. Real Anal. Exchange 28 (2002/2003), 55–70. | MR
[14] Lee Tuo Yeong: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677–700. | MR | Zbl
[15] Lee Tuo Yeong: Some full characterizations of the strong McShane integral. Math. Bohem. 129 (2004), 305–312. | MR | Zbl
[16] Lu Jitan and Lee Peng Yee: The primitives of Henstock integrable functions in Euclidean space. Bull. London Math. Soc. 31 (1999), 173–180. | DOI | MR
[17] S. Saks: Theory of the Integral, 2nd edition. Stechert & Co., New York, 1964. | MR