An application of Pólya’s enumeration theorem to partitions of subsets of positive integers
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 611-623
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $S$ be a non-empty subset of positive integers. A partition of a positive integer $n$ into $S$ is a finite nondecreasing sequence of positive integers $a_1, a_2, \dots , a_r$ in $S$ with repetitions allowed such that $\sum ^r_{i=1} a_i = n$. Here we apply Pólya’s enumeration theorem to find the number $¶(n;S)$ of partitions of $n$ into $S$, and the number ${\mathrm DP}(n;S)$ of distinct partitions of $n$ into $S$. We also present recursive formulas for computing $¶(n;S)$ and ${\mathrm DP}(n;S)$.
Let $S$ be a non-empty subset of positive integers. A partition of a positive integer $n$ into $S$ is a finite nondecreasing sequence of positive integers $a_1, a_2, \dots , a_r$ in $S$ with repetitions allowed such that $\sum ^r_{i=1} a_i = n$. Here we apply Pólya’s enumeration theorem to find the number $¶(n;S)$ of partitions of $n$ into $S$, and the number ${\mathrm DP}(n;S)$ of distinct partitions of $n$ into $S$. We also present recursive formulas for computing $¶(n;S)$ and ${\mathrm DP}(n;S)$.
Classification :
05A15, 05A17, 11P81
Keywords: Pólya’s enumeration theorem; partitions of a positive integer into a non-empty subset of positive integers; distinct partitions of a positive integer into a non-empty subset of positive integers; recursive formulas and algorithms
Keywords: Pólya’s enumeration theorem; partitions of a positive integer into a non-empty subset of positive integers; distinct partitions of a positive integer into a non-empty subset of positive integers; recursive formulas and algorithms
@article{CMJ_2005_55_3_a3,
author = {Wu, Xiaojun and Chao, Chong-Yun},
title = {An application of {P\'olya{\textquoteright}s} enumeration theorem to partitions of subsets of positive integers},
journal = {Czechoslovak Mathematical Journal},
pages = {611--623},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153086},
zbl = {1081.05010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a3/}
}
TY - JOUR AU - Wu, Xiaojun AU - Chao, Chong-Yun TI - An application of Pólya’s enumeration theorem to partitions of subsets of positive integers JO - Czechoslovak Mathematical Journal PY - 2005 SP - 611 EP - 623 VL - 55 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a3/ LA - en ID - CMJ_2005_55_3_a3 ER -
Wu, Xiaojun; Chao, Chong-Yun. An application of Pólya’s enumeration theorem to partitions of subsets of positive integers. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 611-623. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a3/