We define equivariant tensors for every non-negative integer $p$ and every Weil algebra $A$ and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type $(p,0)$ on an $n$-dimensional manifold $M$ to tensor fields of type $(p,0)$ on $T^AM$ if $1\le p\le n$. Moreover, we determine explicitly the equivariant tensors for the Weil algebras ${\mathbb D}^r_k$, where $k$ and $r$ are non-negative integers.
We define equivariant tensors for every non-negative integer $p$ and every Weil algebra $A$ and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type $(p,0)$ on an $n$-dimensional manifold $M$ to tensor fields of type $(p,0)$ on $T^AM$ if $1\le p\le n$. Moreover, we determine explicitly the equivariant tensors for the Weil algebras ${\mathbb D}^r_k$, where $k$ and $r$ are non-negative integers.
@article{CMJ_2005_55_3_a21,
author = {D\k{e}becki, Jacek},
title = {Linear liftings of skew-symmetric tensor fields to {Weil} bundles},
journal = {Czechoslovak Mathematical Journal},
pages = {809--816},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153104},
zbl = {1081.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a21/}
}
TY - JOUR
AU - Dębecki, Jacek
TI - Linear liftings of skew-symmetric tensor fields to Weil bundles
JO - Czechoslovak Mathematical Journal
PY - 2005
SP - 809
EP - 816
VL - 55
IS - 3
UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a21/
LA - en
ID - CMJ_2005_55_3_a21
ER -
%0 Journal Article
%A Dębecki, Jacek
%T Linear liftings of skew-symmetric tensor fields to Weil bundles
%J Czechoslovak Mathematical Journal
%D 2005
%P 809-816
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a21/
%G en
%F CMJ_2005_55_3_a21
Dębecki, Jacek. Linear liftings of skew-symmetric tensor fields to Weil bundles. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 809-816. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a21/
[1] J. Gancarzewicz, W. Mikulski and Z. Pogoda: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. | DOI | MR
[2] J. Grabowski and P. Urbański: Tangent lifts of Poisson and related structures. J. Phys. A 28 (1995), 6743–6777. | DOI | MR
[3] P. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR
[4] M. Mikulski: Natural transformations transforming functions and vector fields to functions on some natural bundles. Math. Bohem. 117 (1992), 217–223. | MR | Zbl
[5] W. M. Mikulski: The linear natural operators lifting 2-vector fields to some Weil bundles. Note Mat. 19 (1999), 213–217. | MR | Zbl