A note on $\aleph$-spaces and $g$-metrizable spaces
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 803-808
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we give the mapping theorems on $\aleph $-spaces and $g$-metrizable spaces by means of some sequence-covering mappings, mssc-mappings and $\pi $-mappings.
In this paper, we give the mapping theorems on $\aleph $-spaces and $g$-metrizable spaces by means of some sequence-covering mappings, mssc-mappings and $\pi $-mappings.
Classification : 54C10, 54E35, 54E40, 54E99
Keywords: $\aleph $-spaces; $g$-metrizable spaces; strong sequence-covering mappings; sequence-covering mappings; mssc-mappings; $\pi $-mappings
@article{CMJ_2005_55_3_a20,
     author = {Li, Zhaowen},
     title = {A note on $\aleph$-spaces and $g$-metrizable spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {803--808},
     year = {2005},
     volume = {55},
     number = {3},
     mrnumber = {2153103},
     zbl = {1081.54525},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a20/}
}
TY  - JOUR
AU  - Li, Zhaowen
TI  - A note on $\aleph$-spaces and $g$-metrizable spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 803
EP  - 808
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a20/
LA  - en
ID  - CMJ_2005_55_3_a20
ER  - 
%0 Journal Article
%A Li, Zhaowen
%T A note on $\aleph$-spaces and $g$-metrizable spaces
%J Czechoslovak Mathematical Journal
%D 2005
%P 803-808
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a20/
%G en
%F CMJ_2005_55_3_a20
Li, Zhaowen. A note on $\aleph$-spaces and $g$-metrizable spaces. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 803-808. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a20/

[1] A.  Arkhangel’skii: Mappings and spaces. Russian Math. Surveys 21 (1966), 115–162. | DOI | MR

[2] S.  Lin: Locally countable collections, locally finite collections and Alexandroff’s problems. Acta Math. Sinica 37 (1994), 491–496. (Chinese) | MR | Zbl

[3] S.  Lin: Generalized Metric Spaces and Mappings. Chinese Scientific publ., Beijing, 1995.

[4] L.  Foged: Characterizations of $\aleph $-spaces. Pacific J.  Math. 110 (1984), 59–63. | DOI | MR | Zbl

[5] J.  Nagata: General metric spaces  I. In: Topics in General Topology, North-Holland, Amsterdam, 1989. | MR

[6] F.  Siwiec: Sequence-covering and countably bi-quotient mappings. Gen. Top. Appl. 1 (1971), 143–154. | MR | Zbl

[7] Y.  Tanaka: Symmetric spaces, $g$-developable spaces and $g$-metrizable spaces. Math. Japonica 36 (1991), 71–84. | MR | Zbl

[8] F. Siwiec: On defining a space by a weak-base. Pacific J.  Math. 52 (1974), 233–245. | DOI | MR | Zbl

[9] G.  Gruenhage, E.  Michael and Y.  Tanaka: Spaces determined by point-countable covers. Pacific J.  Math. 113 (1984), 303–332. | DOI | MR

[10] V. I.  Ponomarev: Axioms of countability and continuous mappings. Bull. Pol. Acad. Math. 8 (1960), 127–133. | MR

[11] P. O’Meara: On paracompactness in function spaces with the compact-open topology. Proc. Amer. Math. Soc. 29 (1971), 183–189. | MR

[12] R. W.  Heath: On open mappings and certain spaces satisfying the first countability axiom. Fund. Math. 57 (1965), 91–96. | DOI | MR | Zbl

[13] J. A.  Kofner: On a new class of spaces and some problems of symmetrizability theory. Soviet Math. Dokl. 10 (1969), 845–848. | Zbl

[14] D. K.  Burke: Cauchy sequences in semimetric spaces. Proc. Amer. Math. Soc. 33 (1972), 161–164. | DOI | MR | Zbl

[15] K. B.  Lee: On certain $g$-first countable spaces. Pacific J.  Math. 65 (1976), 113–118. | DOI | MR | Zbl

[16] L.  Foged: On $g$-metrizability. Pacific J.  Math. 98 (1982), 327–332. | DOI | MR | Zbl

[17] S.  Lin: A note on the Arens’ space and sequential fan. Topology Appl. 81 (1997), 185–196. | DOI | MR | Zbl

[18] S.  Lin: On $g$-metrizable spaces. Chinese Ann. Math. 13 (1992), 403–409. | MR | Zbl

[19] C.  Liu and M.  Dai: $g$-metrizability and $S_\omega $. Topology Appl. 60 (1994), 185–189. | MR

[20] Y.  Tanaka: $\sigma $-hereditarily closure-preserving $k$-networks and $g$-metrizability. Proc. Amer. Math. Soc. 112 (1991), 283–290. | MR | Zbl

[21] R. H.  Bing: Metrization of topological spaces. Canad. J.  Math. 3 (1951), 175–186. | DOI | MR | Zbl