Keywords: infinite Jacobi matrix; symmetric operator; selfadjoint and nonselfadjoint extensions; maximal dissipative operator; selfadjoint dilation; scattering matrix; functional model; characteristic function; completeness of the system of eigenvectors and associated vectors
@article{CMJ_2005_55_3_a2,
author = {Allahverdiev, B. P.},
title = {Extensions, dilations and functional models of infinite {Jacobi} matrix},
journal = {Czechoslovak Mathematical Journal},
pages = {593--609},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153085},
zbl = {1081.47036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a2/}
}
Allahverdiev, B. P. Extensions, dilations and functional models of infinite Jacobi matrix. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 593-609. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a2/
[1] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis. Fizmatgiz, Moscow, 1961.
[2] F. V. Atkinson: Discrete and Continuous Boundary Problems. Academic Press, New York, 1964. | MR | Zbl
[3] M. Benammar, W. D. Evans: On the Friedrichs extension of semi-bounded difference operators. Math. Proc. Camb. Philos. Soc. 116 (1994), 167–177. | DOI | MR
[4] Yu. M. Berezanskij: Expansion in Eigenfunctions of Selfadjoint Operators. Naukova Dumka, Kiev, 1965.
[5] V. M. Bruk: On a class of boundary-value problems with a spectral parameter in the boundary conditions. Mat. Sb. 100 (1976), 210–216. | MR
[6] L. S. Clark: A spectral analysis for self-adjoint operators generated by a class of second order difference equations. J. Math. Anal. Appl. 197 (1996), 267–285. | DOI | MR | Zbl
[7] M. L Gorbachuk, V. I. Gorbachuk and A. N. Kochubei: The theory of extensions of symmetric operators and boundary-value problems for differential equations. Ukrain. Mat. Zh. 41 (1989), 1299–1312. | MR
[8] V. I. Gorbachuk and M. L. Gorbachuk: Boundary Value Problems for Operator Differential Equations. Naukova Dumka, Kiev, 1984. | MR
[9] A. N. Kochubei: Extensions of symmetric operators and symmetric binary relations. Mat. Zametki 17 (1975), 41–48. | MR
[10] A. Kuzhel: Characteristic Functions and Models of Nonself-adjoint Operators. Kluwer, Boston-London-Dordrecht, 1996. | Zbl
[11] P. D. Lax and R. S. Phillips: Scattering Theory. Academic Press, New York, 1967.
[12] B. Sz.-Nagy and C. Foias: Analyse Harmonique des Operateurs de l’espace de Hilbert. Masson and Akad Kiadó, Paris and Budapest, 1967. | MR
[13] J. von Neumann: Allgemeine Eigenwerttheorie Hermitischer Funktionaloperatoren. Math. Ann. 102 (1929), 49–131. | DOI
[14] F. S. Rofe-Beketov: Self-adjoint extensions of differential operators in space of vector-valued functions. Dokl. Akad. Nauk SSSR 184 (1969), 1034–1037. | MR
[15] M. M. Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis, Vol. 15. Amer. Math. Soc. Coll. Publ., Providence, 1932. | MR
[16] S. T. Welstead: Boundary conditions at infinity for difference equations of limit-circle type. J. Math. Anal. Appl. 89 (1982), 442–461. | DOI | MR | Zbl
[17] H. Weyl: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen. Math. Ann. 68 (1910), 222–269.