Keywords: statistical convergence; invariant means; core theorems; matrix transformations
@article{CMJ_2005_55_3_a19,
author = {\c{C}o\c{s}kun, H\"usamettin and \c{C}akan, Celal},
title = {A class of statistical and $\sigma$-conservative matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {791--801},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153102},
zbl = {1081.40003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a19/}
}
Çoşkun, Hüsamettin; Çakan, Celal. A class of statistical and $\sigma$-conservative matrices. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 791-801. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a19/
[1] H. Çoşkun, C. Çakan and Mursaleen: On the statistical and $\sigma $-cores. Studia Math. 153 (2003), 29–35. | MR
[2] G. Das: Sublinear functionals and a class of conservative matrices. Bull. Inst. Math. Acad. Sinica 15 (1987), 89–106. | MR | Zbl
[3] J. A. Fridy and C. Orhan: Statistical limit superior and limit inferior. Proc. Amer. Math. Soc. 125 (1997), 3625–3631. | DOI | MR
[4] J. Li and J. A. Fridy: Matrix transformations of statistical cores of complex sequences. Analysis 20 (2000), 15–34. | DOI | MR
[5] E. Kolk: Matrix maps into the space of statistically convergent bounded sequences. Proc. Estonian Acad. Sci. Phys. Math. 45 (1996), 187–192. | MR | Zbl
[6] I. J. Maddox: Elements of Functional Analysis. Cambridge University Press, Cambridge, 1970. | MR | Zbl
[7] S. L. Mishra, B. Satapathy and N. Rath: Invariant means and $\sigma $-core. J. Indian Math. Soc. 60 (1984), 151–158. | MR
[8] Mursaleen: On some new invariant matrix methods of summability. Quart. J. Math. Oxford Ser. 2 34 (1983), 77–86. | DOI | MR | Zbl
[9] R. Raimi: Invariant means and invariant matrix methods of summability. Duke Math. J. 30 (1963), 81–94. | DOI | MR | Zbl
[10] P. Schaefer: Infinite matrices and invariant means. Proc. Amer. Math. Soc. 36 (1972), 104–110. | DOI | MR | Zbl
[11] S. Simons: Banach limits, infinite matrices and sublinear functionals. J. Math. Anal. Appl. 26 (1969), 640–655. | DOI | MR | Zbl