A class of statistical and $\sigma$-conservative matrices
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 791-801
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In [5] and [10], statistical-conservative and $\sigma $-conservative matrices were characterized. In this note we have determined a class of statistical and $\sigma $-conservative matrices studying some inequalities which are analogous to Knopp’s Core Theorem.
In [5] and [10], statistical-conservative and $\sigma $-conservative matrices were characterized. In this note we have determined a class of statistical and $\sigma $-conservative matrices studying some inequalities which are analogous to Knopp’s Core Theorem.
Classification : 40C05, 40G99, 40J05, 46A45
Keywords: statistical convergence; invariant means; core theorems; matrix transformations
@article{CMJ_2005_55_3_a19,
     author = {\c{C}o\c{s}kun, H\"usamettin and \c{C}akan, Celal},
     title = {A class of statistical and $\sigma$-conservative matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {791--801},
     year = {2005},
     volume = {55},
     number = {3},
     mrnumber = {2153102},
     zbl = {1081.40003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a19/}
}
TY  - JOUR
AU  - Çoşkun, Hüsamettin
AU  - Çakan, Celal
TI  - A class of statistical and $\sigma$-conservative matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 791
EP  - 801
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a19/
LA  - en
ID  - CMJ_2005_55_3_a19
ER  - 
%0 Journal Article
%A Çoşkun, Hüsamettin
%A Çakan, Celal
%T A class of statistical and $\sigma$-conservative matrices
%J Czechoslovak Mathematical Journal
%D 2005
%P 791-801
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a19/
%G en
%F CMJ_2005_55_3_a19
Çoşkun, Hüsamettin; Çakan, Celal. A class of statistical and $\sigma$-conservative matrices. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 791-801. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a19/

[1] H. Çoşkun, C. Çakan and Mursaleen: On the statistical and $\sigma $-cores. Studia Math. 153 (2003), 29–35. | MR

[2] G.  Das: Sublinear functionals and a class of conservative matrices. Bull. Inst. Math. Acad. Sinica 15 (1987), 89–106. | MR | Zbl

[3] J. A.  Fridy and C.  Orhan: Statistical limit superior and limit inferior. Proc. Amer. Math. Soc. 125 (1997), 3625–3631. | DOI | MR

[4] J.  Li and J. A.  Fridy: Matrix transformations of statistical cores of complex sequences. Analysis 20 (2000), 15–34. | DOI | MR

[5] E.  Kolk: Matrix maps into the space of statistically convergent bounded sequences. Proc. Estonian Acad. Sci. Phys. Math. 45 (1996), 187–192. | MR | Zbl

[6] I. J.  Maddox: Elements of Functional Analysis. Cambridge University Press, Cambridge, 1970. | MR | Zbl

[7] S. L.  Mishra, B.  Satapathy and N.  Rath: Invariant means and $\sigma $-core. J.  Indian Math. Soc. 60 (1984), 151–158. | MR

[8] Mursaleen: On some new invariant matrix methods of summability. Quart. J.  Math. Oxford Ser.  2 34 (1983), 77–86. | DOI | MR | Zbl

[9] R.  Raimi: Invariant means and invariant matrix methods of summability. Duke Math.  J. 30 (1963), 81–94. | DOI | MR | Zbl

[10] P.  Schaefer: Infinite matrices and invariant means. Proc. Amer. Math. Soc. 36 (1972), 104–110. | DOI | MR | Zbl

[11] S.  Simons: Banach limits, infinite matrices and sublinear functionals. J.  Math. Anal. Appl. 26 (1969), 640–655. | DOI | MR | Zbl