Keywords: spectral radius; Laplacian eigenvalue; strongly regular graph
@article{CMJ_2005_55_3_a18,
author = {Zhou, Bo and Cho, Han Hyuk},
title = {Remarks on spectral radius and {Laplacian} eigenvalues of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {781--790},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153101},
zbl = {1081.05068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a18/}
}
Zhou, Bo; Cho, Han Hyuk. Remarks on spectral radius and Laplacian eigenvalues of a graph. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 781-790. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a18/
[1] R. A. Brualdi: From the Editor in Chief. Linear Algebra Appl. 360 (2003), 279–283. | MR
[2] D. M. Cvetkovič, M. Doob and H. Sachs: Spectra of Graphs. DVW, Berlin, 1980. | MR
[3] M. Fiedler: Algebraic conectivity of graphs. Czechoslovak Math. J. 23 (1973), 298–305. | MR
[4] R. Grone and R. Merris: The Laplacian spectrum of a graph (II). SIAM J. Discrete Math. 7 (1994), 221–229. | DOI | MR
[5] Y. Hong: Bounds of eigenvalues of graphs. Discrete Math. 123 (1993), 65–74. | DOI | MR | Zbl
[6] Y. Hong, J. Shu and K. Fang: A sharp upper bound of the spectral radius of graphs. J. Combinatorial Theory Ser. B 81 (2001), 177–183. | DOI | MR
[7] R. Merris: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197-198 (1994), 143–176. | MR | Zbl
[8] R. Stanley: A bound on the spectral radius of graphs with $e$ edges. Linear Algebra Appl. 87 (1987), 267–269. | DOI | MR | Zbl
[9] J. Shu, Y. Hong and W. Kai: A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph. Linear Algebra Appl. 347 (2002), 123–129. | MR
[10] V. Nikiforov: Some inequalities for the largest eigenvalue of a graph. Combin. Probab. Comput. 11 (2002), 179–189. | DOI | MR | Zbl
[11] X. Zhang and J. Li: On the $k$-th largest eigenvalue of the Laplacian matrix of a graph. Acta Mathematicae Applicatae Sinica 17 (2001), 183–190. | DOI | MR