Universal interpolating sequences on some function spaces
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 773-780
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $H(K)$ be the Hilbert space with reproducing kernel $K$. This paper characterizes some sufficient conditions for a sequence to be a universal interpolating sequence for $H(K)$.
Let $H(K)$ be the Hilbert space with reproducing kernel $K$. This paper characterizes some sufficient conditions for a sequence to be a universal interpolating sequence for $H(K)$.
Classification : 30E05, 46E20, 46E22, 47B32, 47B38
Keywords: reproducing kernels; universal interpolating sequences; Bessel sequence; Riesz-Fischer sequence
@article{CMJ_2005_55_3_a17,
     author = {Yousefi, B. and Tabatabaie, B.},
     title = {Universal interpolating sequences on some function spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {773--780},
     year = {2005},
     volume = {55},
     number = {3},
     mrnumber = {2153100},
     zbl = {1081.47041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a17/}
}
TY  - JOUR
AU  - Yousefi, B.
AU  - Tabatabaie, B.
TI  - Universal interpolating sequences on some function spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 773
EP  - 780
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a17/
LA  - en
ID  - CMJ_2005_55_3_a17
ER  - 
%0 Journal Article
%A Yousefi, B.
%A Tabatabaie, B.
%T Universal interpolating sequences on some function spaces
%J Czechoslovak Mathematical Journal
%D 2005
%P 773-780
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a17/
%G en
%F CMJ_2005_55_3_a17
Yousefi, B.; Tabatabaie, B. Universal interpolating sequences on some function spaces. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 773-780. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a17/

[1] G. T.  Adams, P. J.  McGuire and V. I.  Paulsen: Analytic reproducing kernels and multiplication operators. Illinois J.  Math. 36 (1992), 404–419. | DOI | MR

[2] N.  Aronszajn: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337–404. | DOI | MR | Zbl

[3] N.  Bari: Biorthogonal systems and bases in Hilbert space. Matematika 4 (1951), 69–107 (in Russian). | MR

[4] J. B.  Conway: The Theory of Subnormal Operators. Math. Surveys Monographs  36. Amer. Math. Soc., , 1991. | MR

[5] R. G.  Douglas: Banach Algebra Techniques in Operator Theory. Academic Press, New York, 1972. | MR | Zbl

[6] J. B.  Garnet: Bounded Analytic Functions. Academic Press, New York, 1981. | MR

[7] I.  Schur: Bemerkungen zur Theorie der beschrönkten Biline arformen mit undendlich vielen Veränderlichen. Journal für die Reine und Angewandte Mathematik 140 (1911), 1–28.

[8] K.  Seddighi: Operators Acting on Hilbert Spaces of Analytic Functions. A series of lectures. Dept. of  Math., Univ. of Calgary, , 1991.

[9] K.  Seddighi and S. M.  Vaezpour: Commutants of certain multiplication operators on Hilbert spaces of analytic functions. Studia Mathematica 133 (1999), 121–130. | DOI | MR

[10] H. S.  Shapiro and A. L.  Shields: On some interpolation problems for analytic functions. Amer. J.  Math. 83 (1961), 513–532. | DOI | MR

[11] B.  Yousefi: Interpolating sequence on certain Banach spaces of analytic functions. Bull. Austral. Math. Soc. 65 (2002), 177–182. | DOI | MR | Zbl

[12] K.  Zhu: Operator Theory in Function Spaces. Marcel Dekker, New York, 1990. | MR | Zbl

[13] K.  Zhu: A class of operators associated with reproducing kernels. J.  Operator Theory 38 (1997), 19–24. | MR | Zbl