Keywords: perfect; Stieltjes perfect; moment; positive definite; conelike; semi-$*$-divisible; $*$-semigroup
@article{CMJ_2005_55_3_a15,
author = {Bisgaard, Torben Maack and Sakakibara, Nobuhisa},
title = {Stieltjes perfect semigroups are perfect},
journal = {Czechoslovak Mathematical Journal},
pages = {729--753},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153098},
zbl = {1081.43002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a15/}
}
Bisgaard, Torben Maack; Sakakibara, Nobuhisa. Stieltjes perfect semigroups are perfect. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 729-753. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a15/
[1] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis. Oliver & Boyd, Edinburgh, 1965. | MR | Zbl
[2] C. Berg: Fonctions définies négatives et majoration de Schur. In: Théorie du Potentiel (Orsay, 1983), Lecture Notes in Mathematics Vol. 1096, G. Mokobodzki, D. Pinchon (eds.), Springer-Verlag, Berlin, 1984, pp. 69–89. | MR | Zbl
[3] C. Berg, J. P. R. Christensen and C. U. Jensen: A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169. | DOI | MR
[4] C. Berg, J. P. R. Christensen and P. Ressel: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Springer-Verlag, Berlin, 1984. | MR
[5] T. M. Bisgaard: Characterization of perfect involution groups. Math. Scand. 65 (1989), 245–258. | DOI | MR | Zbl
[6] T. M. Bisgaard: Separation by characters or positive definite functions. Semigroup Forum 53 (1996), 317–320. | DOI | MR | Zbl
[7] T. M. Bisgaard: Extensions of Hamburger’s Theorem. Semigroup Forum 57 (1998), 397–429. | DOI | MR | Zbl
[8] T. M. Bisgaard: On perfect semigroups. Acta Math. Hungar. 79 (1998), 269–294. | DOI | MR | Zbl
[9] T. M. Bisgaard: Semiperfect countable $\mathbb{C}$-separative $C$-finite semigroups. Collect. Math. 52 (2001), 55–73. | MR
[10] T. M. Bisgaard: Factoring of positive definite functions on semigroups. Semigroup Forum 64 (2002), 243–264. | DOI | MR | Zbl
[11] T. M. Bisgaard: A note on factoring of positive definite functions on semigroups. Math. Nachr. 236 (2002), 31–46. | DOI | MR | Zbl
[12] T. M. Bisgaard: Extensions of Herglotz’ Theorem. Comm. Math. Univ. Sct. Pauli 51 (2002), 195–215. | MR | Zbl
[13] T. M. Bisgaard: On the Stieltjes moment problem on semigroups. Czechoslovak Math. J. 52(127) (2002), 155–196. | DOI | MR | Zbl
[14] T. M. Bisgaard: Semiperfect finitely generated abelian semigroups without involution. Math. Scand. 91 (2002), 285–319. | DOI | MR | Zbl
[15] T. M. Bisgaard and P. Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups. Math. Z. 200 (1989), 511–525. | MR
[16] T. M. Bisgaard and N. Sakakibara: A reduction of the problem of characterizing perfect semigroups. Math. Scand. 91 (2002), 55–66. | DOI | MR
[17] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups, Vol. I. Amer. Math. Soc., Providence, 1961. | MR
[18] P. R. Halmos: Measure Theory. Springer-Verlag, Berlin, 1974. | Zbl
[19] H. L. Hamburger: Über eine Erweiterung des Stieltjesschen Momentenproblems. Math. Ann. 81 (1920), 235–319. | DOI | MR
[20] G. Herglotz: Über Potenzreihen mit positivem, reellen Teil im Einheitskreis. Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 63 (1911), 501–511.
[21] K. Nishio and N. Sakakibara: Perfectness of conelike $*$-semigroups in $\mathbb{Q}^k$. Math. Nachr. 216 (2000), 155–167. | DOI | MR
[22] A. L. T. Paterson: An integral representation of positive definite functions on a Clifford semigroup. Math. Ann. 234 (1978), 125–138. | DOI | MR | Zbl
[23] A. Powzner: Über positive Funktionen auf einer Abelschen Gruppe. C. R. (Doklady) Akad. Sci. URSS (N.S.) 28 (1940), 294–295. | MR
[24] D. A. Raikov: Positive definite functions on commutative groups with an invariant measure. C. R. (Doklady) Akad. Sci. URSS (N.S.) 28 (1940), 296–300. | MR
[25] N. Sakakibara: Perfectness and semiperfectness of abelian $* $-semigroups without zero. Hokkaido Math. J. 24 (1995), 113–125. | DOI | MR
[26] K. Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390. | DOI | MR
[27] J. A. Shohat and J. D. Tamarkin: The Problem of Moments. Amer. Math. Soc., Providence, 1943. | MR
[28] T. J. Stieltjes: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8 (1894), 1–122. | DOI | MR
[29] R. J. Warne and L. K. Williams: Characters on inverse semigroups. Czechoslovak Math. J. 11 (1961), 150–154. | MR
[30] A. Weil: L’intégration dans les groupes topologiques et ses applications. Actual. Sci. Ind., No. 869 and 1145, Hermann et Cie., Paris (1940 and 1951). | MR