Stieltjes perfect semigroups are perfect
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 729-753
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An abelian $*$-semigroup $S$ is perfect (resp. Stieltjes perfect) if every positive definite (resp. completely so) function on $S$ admits a unique disintegration as an integral of hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes perfect semigroup is perfect. The converse has been known for semigroups with neutral element, but is here shown to be not true in general. We prove that an abelian $*$-semigroup $S$ is perfect if for each $s \in S$ there exist $t\in S$ and $m,n\in \mathbb{N}_0$ such that $m+n\ge 2$ and $s+s^ *=s^*+mt+nt^*$. This was known only with $s=mt+nt^*$ instead. The equality cannot be replaced by $s+s^*+s=s+s^*+mt+nt^*$ in general, but for semigroups with neutral element it can be replaced by $s+p(s+s^*)=p(s+s^*)+ mt+nt^*$ for arbitrary $p\in \mathbb{N}$ (allowed to depend on $s$).
An abelian $*$-semigroup $S$ is perfect (resp. Stieltjes perfect) if every positive definite (resp. completely so) function on $S$ admits a unique disintegration as an integral of hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes perfect semigroup is perfect. The converse has been known for semigroups with neutral element, but is here shown to be not true in general. We prove that an abelian $*$-semigroup $S$ is perfect if for each $s \in S$ there exist $t\in S$ and $m,n\in \mathbb{N}_0$ such that $m+n\ge 2$ and $s+s^ *=s^*+mt+nt^*$. This was known only with $s=mt+nt^*$ instead. The equality cannot be replaced by $s+s^*+s=s+s^*+mt+nt^*$ in general, but for semigroups with neutral element it can be replaced by $s+p(s+s^*)=p(s+s^*)+ mt+nt^*$ for arbitrary $p\in \mathbb{N}$ (allowed to depend on $s$).
Classification : 43A35, 44A60
Keywords: perfect; Stieltjes perfect; moment; positive definite; conelike; semi-$*$-divisible; $*$-semigroup
@article{CMJ_2005_55_3_a15,
     author = {Bisgaard, Torben Maack and Sakakibara, Nobuhisa},
     title = {Stieltjes perfect semigroups are perfect},
     journal = {Czechoslovak Mathematical Journal},
     pages = {729--753},
     year = {2005},
     volume = {55},
     number = {3},
     mrnumber = {2153098},
     zbl = {1081.43002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a15/}
}
TY  - JOUR
AU  - Bisgaard, Torben Maack
AU  - Sakakibara, Nobuhisa
TI  - Stieltjes perfect semigroups are perfect
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 729
EP  - 753
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a15/
LA  - en
ID  - CMJ_2005_55_3_a15
ER  - 
%0 Journal Article
%A Bisgaard, Torben Maack
%A Sakakibara, Nobuhisa
%T Stieltjes perfect semigroups are perfect
%J Czechoslovak Mathematical Journal
%D 2005
%P 729-753
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a15/
%G en
%F CMJ_2005_55_3_a15
Bisgaard, Torben Maack; Sakakibara, Nobuhisa. Stieltjes perfect semigroups are perfect. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 729-753. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a15/

[1] N. I.  Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis. Oliver & Boyd, Edinburgh, 1965. | MR | Zbl

[2] C.  Berg: Fonctions définies négatives et majoration de Schur. In: Théorie du Potentiel (Orsay, 1983), Lecture Notes in Mathematics Vol. 1096, G. Mokobodzki, D.  Pinchon (eds.), Springer-Verlag, Berlin, 1984, pp. 69–89. | MR | Zbl

[3] C.  Berg, J. P. R.  Christensen and C. U.  Jensen: A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169. | DOI | MR

[4] C.  Berg, J. P. R.  Christensen and P.  Ressel: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Springer-Verlag, Berlin, 1984. | MR

[5] T. M.  Bisgaard: Characterization of perfect involution groups. Math. Scand. 65 (1989), 245–258. | DOI | MR | Zbl

[6] T. M. Bisgaard: Separation by characters or positive definite functions. Semigroup Forum 53 (1996), 317–320. | DOI | MR | Zbl

[7] T. M.  Bisgaard: Extensions of Hamburger’s Theorem. Semigroup Forum 57 (1998), 397–429. | DOI | MR | Zbl

[8] T. M.  Bisgaard: On perfect semigroups. Acta Math. Hungar. 79 (1998), 269–294. | DOI | MR | Zbl

[9] T. M.  Bisgaard: Semiperfect countable $\mathbb{C}$-separative $C$-finite semigroups. Collect. Math. 52 (2001), 55–73. | MR

[10] T. M.  Bisgaard: Factoring of positive definite functions on semigroups. Semigroup Forum 64 (2002), 243–264. | DOI | MR | Zbl

[11] T. M.  Bisgaard: A note on factoring of positive definite functions on semigroups. Math. Nachr. 236 (2002), 31–46. | DOI | MR | Zbl

[12] T. M.  Bisgaard: Extensions of Herglotz’ Theorem. Comm. Math. Univ. Sct. Pauli 51 (2002), 195–215. | MR | Zbl

[13] T. M.  Bisgaard: On the Stieltjes moment problem on semigroups. Czechoslovak Math. J. 52(127) (2002), 155–196. | DOI | MR | Zbl

[14] T. M.  Bisgaard: Semiperfect finitely generated abelian semigroups without involution. Math. Scand. 91 (2002), 285–319. | DOI | MR | Zbl

[15] T. M.  Bisgaard and P.  Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups. Math.  Z. 200 (1989), 511–525. | MR

[16] T. M.  Bisgaard and N.  Sakakibara: A reduction of the problem of characterizing perfect semigroups. Math. Scand. 91 (2002), 55–66. | DOI | MR

[17] A. H.  Clifford and G. B.  Preston: The Algebraic Theory of Semigroups, Vol. I. Amer. Math. Soc., Providence, 1961. | MR

[18] P. R.  Halmos: Measure Theory. Springer-Verlag, Berlin, 1974. | Zbl

[19] H. L.  Hamburger: Über eine Erweiterung des Stieltjesschen Momentenproblems. Math. Ann. 81 (1920), 235–319. | DOI | MR

[20] G. Herglotz: Über Potenzreihen mit positivem, reellen Teil im Einheitskreis. Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig, Math.-Phys.  Kl. 63 (1911), 501–511.

[21] K. Nishio and N.  Sakakibara: Perfectness of conelike $*$-semigroups in  $\mathbb{Q}^k$. Math. Nachr. 216 (2000), 155–167. | DOI | MR

[22] A. L. T.  Paterson: An integral representation of positive definite functions on a Clifford semigroup. Math. Ann. 234 (1978), 125–138. | DOI | MR | Zbl

[23] A.  Powzner: Über positive Funktionen auf einer Abelschen Gruppe. C. R.  (Doklady) Akad. Sci. URSS  (N.S.) 28 (1940), 294–295. | MR

[24] D. A.  Raikov: Positive definite functions on commutative groups with an invariant measure. C. R. (Doklady) Akad. Sci. URSS  (N.S.) 28 (1940), 296–300. | MR

[25] N.  Sakakibara: Perfectness and semiperfectness of abelian $* $-semigroups without zero. Hokkaido Math. J. 24 (1995), 113–125. | DOI | MR

[26] K.  Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390. | DOI | MR

[27] J.  A.  Shohat and J. D.  Tamarkin: The Problem of Moments. Amer. Math. Soc., Providence, 1943. | MR

[28] T. J.  Stieltjes: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8 (1894), 1–122. | DOI | MR

[29] R. J.  Warne and L. K. Williams: Characters on inverse semigroups. Czechoslovak Math. J. 11 (1961), 150–154. | MR

[30] A.  Weil: L’intégration dans les groupes topologiques et ses applications. Actual. Sci. Ind., No. 869 and 1145, Hermann et Cie., Paris (1940 and 1951). | MR