On orthogonal Latin $p$-dimensional cubes
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 725-728
We give a construction of $p$ orthogonal Latin $p$-dimensional cubes (or Latin hypercubes) of order $n$ for every natural number $n\ne 2,6$ and $p \ge 2$. Our result generalizes the well known result about orthogonal Latin squares published in 1960 by R. C. Bose, S. S. Shikhande and E. T. Parker.
We give a construction of $p$ orthogonal Latin $p$-dimensional cubes (or Latin hypercubes) of order $n$ for every natural number $n\ne 2,6$ and $p \ge 2$. Our result generalizes the well known result about orthogonal Latin squares published in 1960 by R. C. Bose, S. S. Shikhande and E. T. Parker.
Classification :
05B15
Keywords: Latin $p$-dimensional cube; Latin hypercube; Latin squares; orthogonal
Keywords: Latin $p$-dimensional cube; Latin hypercube; Latin squares; orthogonal
@article{CMJ_2005_55_3_a14,
author = {Trenkler, Mari\'an},
title = {On orthogonal {Latin} $p$-dimensional cubes},
journal = {Czechoslovak Mathematical Journal},
pages = {725--728},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153097},
zbl = {1081.05016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a14/}
}
Trenkler, Marián. On orthogonal Latin $p$-dimensional cubes. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 725-728. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a14/
[1] R. C. Bose, S. S. Shrikhande and E. T. Parker: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canad. J. Math. 12 (1960), 189–203. | DOI | MR
[2] J. Dénes and A. D. Keedwel: Latin Squares and Their Applications. Akadémiai Kiadó, Budapest, 1974. | MR
[3] G. L. Mullen: Orthogonal hypercubes and related designs. J. Stat. Plann. Inference 73 (1998), 177–188. | DOI | MR | Zbl
[4] M. Trenkler: Magic $p$-dimensional cubes of order $n \lnot \equiv 2\hspace{4.44443pt}(\@mod \; 4)$. Acta Arithmetica 92 (2000), 189–194. | MR