One interval in the lattice of partial hyperclones
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 719-724
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper the structure of the interval $[O_A, Hp_A]$ in the lattice of partial hyperclones is determined, where $O_A$ is the clone of all total operations and $Hp_A$ is the clone of all partial hyperoperations on $A$.
In this paper the structure of the interval $[O_A, Hp_A]$ in the lattice of partial hyperclones is determined, where $O_A$ is the clone of all total operations and $Hp_A$ is the clone of all partial hyperoperations on $A$.
Classification : 08A40
Keywords: clone; hyperoperation; hyperalgebra; hyperclone
@article{CMJ_2005_55_3_a13,
     author = {Doroslova\v{c}ki, Rade and Pantovi\'c, Jovanka and Vojvodi\'c, Gradimir},
     title = {One interval in the lattice of partial hyperclones},
     journal = {Czechoslovak Mathematical Journal},
     pages = {719--724},
     year = {2005},
     volume = {55},
     number = {3},
     mrnumber = {2153096},
     zbl = {1081.08005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a13/}
}
TY  - JOUR
AU  - Doroslovački, Rade
AU  - Pantović, Jovanka
AU  - Vojvodić, Gradimir
TI  - One interval in the lattice of partial hyperclones
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 719
EP  - 724
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a13/
LA  - en
ID  - CMJ_2005_55_3_a13
ER  - 
%0 Journal Article
%A Doroslovački, Rade
%A Pantović, Jovanka
%A Vojvodić, Gradimir
%T One interval in the lattice of partial hyperclones
%J Czechoslovak Mathematical Journal
%D 2005
%P 719-724
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a13/
%G en
%F CMJ_2005_55_3_a13
Doroslovački, Rade; Pantović, Jovanka; Vojvodić, Gradimir. One interval in the lattice of partial hyperclones. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 719-724. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a13/

[1] S. Burris and H. P.  Sankappanavar: A Course in Universal Algebra. Graduate Texts in Mathematics, Vol  78. Springer-Verlag, New York-Heidelberg-Berlin, 1981. | MR

[2] Th.  Drescher and R. Pöschel: Multiclones and relations. Multi-Val. Logic 7 (2001), 313–337. | MR

[3] L.  Haddad, I. G.  Rosenberg and D.  Schweigert: A maximal partial clone and a Slupecki-type criterion. Acta Sci. Math. 54 (1990), 89–98. | MR

[4] R.  Pöschel and L. A.  Kalužnin: Funktionen und Relationenalgebren. Ein Kapitel der diskreten Mathematik. Deutscher Verlag der Wiss., Berlin, 1979 (in German); Birkhäuser Verlag, Basel u. Stuttgart (Math. Reihe Bd.  67). | MR

[5] I. G.  Rosenberg: An algebraic aproach to hyperalgebras. Proceedings of 26th ISMVL, Santiago de Compostela, May 28–31, 1996, IEEE, 1996, pp. 203–207.

[6] I. G.  Rosenberg: Multiple-valued hyperstructures. Proceedings of 28th ISMVL, May 27–29, 1998, IEEE, 1998, pp. 326–333. | MR