Keywords: lacunary sequence; invariant convergence; infinite matrix
@article{CMJ_2005_55_3_a10,
author = {Bilgin, Tunay},
title = {Lacunary strong $(A_\sigma, p)$-convergence},
journal = {Czechoslovak Mathematical Journal},
pages = {691--697},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153093},
zbl = {1081.40001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a10/}
}
Bilgin, Tunay. Lacunary strong $(A_\sigma, p)$-convergence. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 691-697. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a10/
[1] S. Banach: Theorie des operation lineaires. Warszava, 1932.
[2] T. Bilgin: Strong $A_{\sigma }$-summability defined by a modulus. J. Ist. Univ. Sci. 53 (1996), 89–95. | MR
[3] T. Bilgin: Lacunary strong $A$-convergence with respect to a modulus. Studia Univ. Babeş-Bolyai Math. 46 (2001), 39–46. | MR | Zbl
[4] G. Das and S. K. Mishra: Sublinear functional and a class of conservative matrices. J. Orissa Math. 20 (1989), 64–67.
[5] G. Das and B. K. Patel: Lacunary distribution of sequences. Indian J. Pure Appl. Math. 20 (1989), 64–74. | MR
[6] A. R Freedman, J. J. Sember and M. Raphed: Some Cesaro-type summability spaces. Proc. London Math. Soc. 37 (1978), 508–520. | MR
[7] G. G. Lorentz: A contribution to the theory of divergent sequences. Acta Math. 80 (1980), 167–190. | MR
[8] Mursaleen: Matrix transformations between some new sequence spaces. Houston J. Math. 4 (1983), 505–509. | MR | Zbl
[9] E. Öztürk and T. Bilgin: Strongly summable sequence spaces defined by a modulus. Indian J. Pure Appl. Math. 25 (1994), 621–625. | MR
[10] S. Pehlivan and B. Fisher: Lacunary strong convergence with respect to a sequence of modulus functions. Comment. Math. Univ. Carolin. 36 (1995), 69–76. | MR
[11] E. Savaş: Lacunary strong $\sigma $-convergence. Indian J. Pure Appl. Math. 21 (1990), 359–365. | MR
[12] P. Scheafer: Infinite matrices and invariant meant. Proc. Amer. Math. Soc. 36 (1972), 104–110. | DOI | MR