Boundary value problems with compatible boundary conditions
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 581-592
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If $Y$ is a subset of the space $\mathbb{R}^{n}\times {\mathbb{R}^{n}}$, we call a pair of continuous functions $U$, $V$ $Y$-compatible, if they map the space $\mathbb{R}^{n}$ into itself and satisfy $Ux\cdot Vy\ge 0$, for all $(x,y)\in Y$ with $x\cdot y\ge {0}$. (Dot denotes inner product.) In this paper a nonlinear two point boundary value problem for a second order ordinary differential $n$-dimensional system is investigated, provided the boundary conditions are given via a pair of compatible mappings. By using a truncation of the initial equation and restrictions of its domain, Brouwer’s fixed point theorem is applied to the composition of the consequent mapping with some projections and a one-parameter family of fixed points $P_{\delta }$ is obtained. Then passing to the limits as $\delta $ tends to zero the so-obtained accumulation points are solutions of the problem.
If $Y$ is a subset of the space $\mathbb{R}^{n}\times {\mathbb{R}^{n}}$, we call a pair of continuous functions $U$, $V$ $Y$-compatible, if they map the space $\mathbb{R}^{n}$ into itself and satisfy $Ux\cdot Vy\ge 0$, for all $(x,y)\in Y$ with $x\cdot y\ge {0}$. (Dot denotes inner product.) In this paper a nonlinear two point boundary value problem for a second order ordinary differential $n$-dimensional system is investigated, provided the boundary conditions are given via a pair of compatible mappings. By using a truncation of the initial equation and restrictions of its domain, Brouwer’s fixed point theorem is applied to the composition of the consequent mapping with some projections and a one-parameter family of fixed points $P_{\delta }$ is obtained. Then passing to the limits as $\delta $ tends to zero the so-obtained accumulation points are solutions of the problem.
Classification : 34B15, 34C30, 34C99
Keywords: differential equations of second order; two-point boundary value problems
@article{CMJ_2005_55_3_a1,
     author = {Karakostas, G. L. and Palamides, P. K.},
     title = {Boundary value problems with compatible boundary conditions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {581--592},
     year = {2005},
     volume = {55},
     number = {3},
     mrnumber = {2153084},
     zbl = {1081.34039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a1/}
}
TY  - JOUR
AU  - Karakostas, G. L.
AU  - Palamides, P. K.
TI  - Boundary value problems with compatible boundary conditions
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 581
EP  - 592
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a1/
LA  - en
ID  - CMJ_2005_55_3_a1
ER  - 
%0 Journal Article
%A Karakostas, G. L.
%A Palamides, P. K.
%T Boundary value problems with compatible boundary conditions
%J Czechoslovak Mathematical Journal
%D 2005
%P 581-592
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a1/
%G en
%F CMJ_2005_55_3_a1
Karakostas, G. L.; Palamides, P. K. Boundary value problems with compatible boundary conditions. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 581-592. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a1/

[1.] J. W. Bebernes and K. Schmitt: Periodic boundary value problems for systems of second order differential equations. J. Differential Equations 13 (1973), 32–47. | DOI | MR

[2] W. A.  Coppel: Stability and Asymptotic Behavior of Differential Equations. Heath Mathematical Monographs. Heat and Company, Boston, 1965. | MR

[3] L. H. Erbe and P. K. Palamides: Boundary value problems for second order differential equations. J.  Math. Anal. Appl. 127 (1987), 80–92. | DOI | MR

[4] J. K. Hale: Ordinary Differential Equations. Krieger Publ., Malabar, 1980. | MR | Zbl

[5] L. Jackson and P. K. Palamides: An existence theorem for a nonlinear two-point boundary value problem. J.  Differential Equations 53 (1984), 48–66. | DOI | MR

[6] G. Karakostas and P. K. Palamides: A boundary value problem for operator equations in Hilbert spaces. J.  Math. Anal. Appl. 261 (2001), 289–294. | DOI | MR

[7] J.  Mawhin: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conf. Series No.  40 AMS, Providence, 1979. | MR | Zbl

[8] J.  Mawhin: Continuation theorems and periodic solutions of ordinary differential equations. In: Topological Methods in Differential equations and inclusions. NATO ASI Series Vol. 472, A. Granas (ed.), Kluwer Acad. Publ., Dordrecht, 1995. | MR | Zbl

[9] Dong Yujun: On solvability of second-order Sturm-Liouville boundary value problems at resonance. Proc. Amer. Math. Soc. 126 (1998), 145–152. | DOI | MR