Keywords: measurable multifunction; usc and lsc multifunction; maximal monotone operator; pseudomonotone operator; generalized pseudomonotone operator; coercive operator; surjective operator; eigenvalue; eigenfunction; Rayleigh quotient; $p$-Laplacian; Yosida approximation; periodic problem.
@article{CMJ_2005_55_3_a0,
author = {Kyritsi, Sophia Th. and Matzakos, Nikolaos and Papageorgiou, Nikolaos S.},
title = {Nonlinear boundary value problems for second order differential inclusions},
journal = {Czechoslovak Mathematical Journal},
pages = {545--579},
year = {2005},
volume = {55},
number = {3},
mrnumber = {2153083},
zbl = {1081.34020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a0/}
}
TY - JOUR AU - Kyritsi, Sophia Th. AU - Matzakos, Nikolaos AU - Papageorgiou, Nikolaos S. TI - Nonlinear boundary value problems for second order differential inclusions JO - Czechoslovak Mathematical Journal PY - 2005 SP - 545 EP - 579 VL - 55 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a0/ LA - en ID - CMJ_2005_55_3_a0 ER -
%0 Journal Article %A Kyritsi, Sophia Th. %A Matzakos, Nikolaos %A Papageorgiou, Nikolaos S. %T Nonlinear boundary value problems for second order differential inclusions %J Czechoslovak Mathematical Journal %D 2005 %P 545-579 %V 55 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a0/ %G en %F CMJ_2005_55_3_a0
Kyritsi, Sophia Th.; Matzakos, Nikolaos; Papageorgiou, Nikolaos S. Nonlinear boundary value problems for second order differential inclusions. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 545-579. http://geodesic.mathdoc.fr/item/CMJ_2005_55_3_a0/
[1] R. Bader: A topological fixed point index theory for evolution inclusions. Zeitsh. Anal. Anwend. 20 (2001), 3–15. | DOI | MR | Zbl
[2] L. Boccardo, P. Drábek, D. Giachetti and M. Kučera: Generalization of the Fredholm alternative for nonlinear differential operators. Nonlin. Anal. 10 (1986), 1083–1103. | DOI | MR
[3] H. Brezis: Operateurs Maximaux Monotones. North-Holland, Amsterdam, 1973. | Zbl
[4] F. Browder and P. Hess: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11 (1972), 251–254. | DOI | MR
[5] F. H. Clarke: Optimization and Nonsmooth Analysis. Wiley, New York, 1983. | MR | Zbl
[6] D. Cohn: Measure Theory. Birkhauser-Verlag, Boston, 1980. | MR | Zbl
[7] H. Dang and S. F. Oppenheimer: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48. | DOI | MR
[8] M. Del Pino, M. Elgueta and R. Manasevich: A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u^{\prime }|^{p-2} u^{\prime })^{\prime } + f(t,u)=0$, $u(0)=u(T)=0$. J. Differential Equations 80 (1989), 1–13. | DOI | MR
[9] P. Drábek: Solvability of boundary value problems with homogeneous ordinary differential operator. Rend. Ist. Mat. Univ. Trieste 8 (1986), 105–124. | MR
[10] L. Erbe and W. Krawcewicz: Nonlinear boundary value problems for differential inclusions $y^{\prime \prime }\in F(t,y,y^{\prime })$. Ann. Pol. Math. 54 (1991), 195–226. | DOI | MR
[11] L. Erbe and W. Krawcewicz: Boundary value problems differential inclusions. Lect. Notes Pure Appl. Math., No. 127, Marcel-Dekker, New York, 1990, pp. 115–135. | MR
[12] L. Erbe and W. Krawcewicz: Existence of solutions to boundary value problems for impulsive second order differential inclusions. Rocky Mountain J. Math. 22 (1992), 519–539. | DOI | MR
[13] L. Erbe, W. Krawcewicz and G. Peschke: Bifurcation of a parametrized family of boundary value problems for second order differential inclusions. Ann. Mat. Pura Appl. 166 (1993), 169–195. | DOI | MR
[14] C. Fabry and D. Fayyad: Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. | MR
[15] M. Frigon: Application de la theorie de la transversalite topologique a des problemes non lineaires pour des equations differentielles ordinaires. Dissertationes Math. 269 (1990). | MR | Zbl
[16] M. Frigon: Theoremes d’existence des solutions d’inclusions differentielle. In: Topological Methods in Diferential Equations and Inclusions. NATO ASI Series, Section C, Vol. 472, Kluwer, Dordrecht, 1995, pp. 51–87. | MR
[17] M. Frigon and A. Granas: Problemes aux limites pour des inclusions differentielles de type semi-continues inferieurement. Rivista Mat. Univ. Parma 17 (1991), 87–97. | MR
[18] S. Fučík, J. Nečas, J. Souček and V. Souček: Spectral Analysis of Nonlinear Operators. Lecture Notes in Math., Vol. 346. Springer-Verlag, Berlin, 1973. | MR
[19] Z. Guo: Boundary value problems of a class of quasilinear differential equations. Diff. Intergral Eqns 6 (1993), 705–719.
[20] N. Halidias and N. S. Papageorgiou: Existence and relaxation results for nonlinear second order multivalued boundary value problems in $\mathbb{R}^N$. J. Diff. Eqns 147 (1998), 123–154. | DOI | MR
[21] N. Halidias and N. S. Papageorgiou: Existence of solutions for quasilinear second order differential inclusions with nonlinear boundary conditions. J. Comput. Appl. Math. 113 (2000), 51–64. | DOI | MR
[22] P. Hartman: Ordinary Differential Equations, 2nd Edition. Birkhauser-Verlag, Boston-Basel-Stuttgart, 1982. | MR
[23] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, 1997. | MR
[24] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, 2000. | MR
[25] D. Kandilakis and N. S. Papageorgiou: Existence theorems for nonlinear boundary value problems for second order differential inclusions. J. Differential Equations 132 (1996), 107–125. | DOI | MR
[26] E. Klein and A. Thompson: Theory of Correspondences. Wiley, New York, 1984. | MR
[27] S. Th. Kyritsi, N. Matzakos and N. S. Papageorgiou: Periodic problems for strongly nonlinear second order differential inclusions. J. Differential Equations 183 (2002), 279–302. | DOI | MR
[28] R. Manasevich and J. Mawhin: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393. | DOI | MR
[29] R. Manasevich and J. Mawhin: Boundary value problems for nonlinear perturbations of vector $p$-Laplacian-like operators. J. Korean Math. Soc. 37 (2000), 665–685. | MR
[30] M. Marcus and V. Mizel: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972), 294–320. | DOI | MR
[31 J. Mawhin and M. Willem] Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York, 1989. | MR | Zbl
[32] Z. Naniewicz and P. Panagiotopoulos: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York, 1994. | MR
[33] N. S. Papageorgiou: Convergence theorems for Banach soace valued integrable multifunctions. Intern. J. Math. Sc. 10 (1987), 433–442. | DOI | MR
[34] T. Pruszko: Some applications of the topological deggre theory to multivalued boundary value problems. Dissertationes Math. 229 (1984). | MR
[35] D. Wagner: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), . | DOI | MR | Zbl
[36] E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer-Verlag, New York, 1990. | MR | Zbl