Keywords: $z^\circ $-ideal; prime $z$-ideal; nonregular ideal; almost ${P}$-space; $\partial $-space; $m$-space
@article{CMJ_2005_55_2_a9,
author = {Azarpanah, F. and Karavan, M.},
title = {On nonregular ideals and $z^\circ$-ideals in $C(X)$},
journal = {Czechoslovak Mathematical Journal},
pages = {397--407},
year = {2005},
volume = {55},
number = {2},
mrnumber = {2137146},
zbl = {1081.54013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a9/}
}
Azarpanah, F.; Karavan, M. On nonregular ideals and $z^\circ$-ideals in $C(X)$. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 397-407. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a9/
[1] M. F. Atiyah and I. G. Macdonald: Introduction to Commutative Algebra. Addison-Wesly, Reading, 1969.
[2] F. Azarpanah: On almost ${P}$-spaces. Far East J. Math. Sci, Special volume (2000), 121–132. | MR | Zbl
[3] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad: On $z^\circ $-ideals in $C(X)$. Fund. Math. 160 (1999), 15–25. | MR
[4] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad: On ideals consisting entirely of zero divisors. Comm. Algebra 28 (2000), 1061–1073. | DOI | MR
[5] F. Dashiel, A. Hager and M. Henriksen: Order-Cauchy completions and vector lattices of continuous functions. Canad. J. Math. XXXII (1980), 657–685. | DOI | MR
[6] R. Engelking: General Topology. PWN-Polish Scientific Publishers, Warszawa, 1977. | MR | Zbl
[7] L. Gillman and M. Jerison: Rings of Continuous Functions. Springer-Verlag, New York-Heidelberg-Berlin, 1976. | MR
[8] M. Henriksen and M. Jerison: The space of minimal prime ideals of a commutative ring. Trans. Amer. Math. Soc. 115 (1965), 110–130. | DOI | MR
[9] M. Henriksen, J. Martinz and R. G. Woods: Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal. International Conference on Applicable General Topology, Ankara, , , 2001. | MR
[10] R. Levy: Almost ${P}$-spaces. Canad. J. Math. 2 (1977), 284–288. | DOI | MR | Zbl
[11] M. A. Mulero: Algebraic properties of rings of continuous functions. Fund. Math. 149 (1996), 55–66. | MR | Zbl
[12] A. I. Veksler: $P^{\prime }$-points, $P^{\prime }$-sets, ${P}^{\prime }$-spaces. A new class of order-continuous measures and functionals. Sov. Math. Dokl. 14 (1973), 1445–1450. | MR | Zbl